Читаем НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. полностью

На мой взгляд, если выбирать среди различных, более или менее внушающих доверие точек зрения относительно формирования потоков снаружи баллона, то проще всего предположить реальное проецирование через стенки лампы разрушенного катодного вещества. Если допустить, что внутри лампы есть достаточно малые частицы, то любые скорости, вплоть до многих тысяч километров в секунду, не только возможны, но скорее правдоподобны; и, даже если бы частицы не подвергались дальнейшему разрушению при соударении со стенкой или иным непроницаемым телом внутри лампы, они бы наверняка проникали сквозь огромные толщи большинства веществ. Мои эксперименты в этом направлении показали, что при первом столкновении с более или менее непроницаемым препятствием внутри лампы происходит практически полная дезинтеграция частиц, при этом, по-видимому, второе соударение обладает небольшим эффектом. К такому выводу можно прийти из хорошо известных законов механики. Мною также обнаружено, что место первого и самого энергичного соударения, будь то анод, катод или стенка сосуда, неизбежно является главным источником лучей или потоков. И вновь, вполне согласуясь с законами механики, проникающая способность потоков тем выше, чем сильнее дезинтеграция. Таким образом, например, лучи, которые пересекают толстые непроницаемые объекты и предположительно испытывают последующую дезинтеграцию, свободнее проходят через плотные субстанции. Подобное явление наблюдал профессор Райт, который первым опубликовал точные результаты в Соединенных Штатах. Мною обнаружено, что толстостенные лампы дают лучи с большей проникающей способностью. Из этого, конечно, не следует, что я придаю этому огромное значение. Как раз упомянутый выше факт и говорит в пользу большей вероятности того, что выбрасываемая материя не является однородным потоком, а состоит из частиц разного размера, которые перемещаются с различными скоростями, поскольку будь верным первое, то проникающая способность зависела бы в основном от скорости. На практике, при использовании рентгеновских лучей, казалось бы, очень важно найти метод их фильтрации и достижения однородности, так как только таким способом можно надеяться получить точные результаты при их исследовании. Для исследовательских целей безусловно более подходящими были бы потоки с совершенно однородной скоростью и характеристикой, если бы таковые могли быть получены.

Поскольку дезинтеграция электродов, в особенности алюминиевых, настолько медленная, что даже после длительного их использования нет заметного уменьшения веса, то отсюда сле- дует, что переносимая потоками Рентгена материя настолько мала, что не поддается регистра- ции. На некоторых лампах, с которыми я работал по несколько месяцев, было видно, что бомбардируемое пятно на стекле полностью пронизано частицами алюминиевого электрода, но, по-видимому, потребовались бы годы непрерывной работы, чтобы накопить сколь ни будь зна- чительное количество налета материи. Возвращаясь к трубке с алюминиевым электродом, сто- ит отметить, что качество должным образом настроенной трубки не только не ухудшается, а, наоборот, кажется, что улучшается. А вот срок службы лампы с платиновым электродом очень короткий из-за оседающего на стенках проводящего слоя, который, как я уже однажды объяс- нял, затрудняет протекание разряда. А именно, как только некоторые выбрасываемые частицы ударяются о проводящий слой, они передают ему подобную же наэлектризованность, или тот же самый по знаку заряд, и последующие частицы испытывают отталкивание. Как результат — естественное увеличение сопротивления трубки. Несмотря па эффективность платинового электрода, упомянутый выше изъян должен, на мой взгляд, привести к отказу от него.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже