Читаем Нобелевские премии. Ученые и открытия полностью

Оптика — один из старейших разделов физики, в котором исследуются процессы излучения света, его распространения в различных средах и взаимодействие света с веществом. Еще в древние времена многие известные философы интересовались оптическими явлениями и размышляли о них в своих сочинениях. Однако основы современной оптики были заложены лишь в XVII в. благодаря исследованиям И. Ньютона, Р. Гука, Ф. Гримальди и X. Гюйгенса.

Работы старых исследователей содержали немало рациональных элементов, но были недостаточно совершенны, и только в начале XIX в. оптика обрела более строгий, научный облик. Убедительными экспериментами Томас Юнг и Огюстен Жан Френель доказали волновую природу света. В своей знаменитой теории электромагнитного поля Максвелл выдвинул идею электромагнитной природы света и установил связь между оптическими и электромагнитными явлениями. К концу XIX в. в результате исследований процессов излучения и поглощения сложилось представление о двойственной природе света было обнаружено, что в одних случаях он ведет себя как поток частиц, а в других — как волна.

За последнее столетие ученые, используя свойства света, поставили немало экспериментов и создали приборы, которыми существенно обогатили различные области науки. Некоторые из ученых-оптиков за свои заслуги были удостоены Нобелевской премии. Первым из них был Альберт Абрахам Майкельсон. Будучи типичным представителем науки XIX в., он считал, что в физике уже почти все открыто и достичь новых результатов можно, только повысив точность экспериментальных измерений — «выше шестого десятичного знака».

Одним из важных вопросов в науке того времени была проблема так называемого эфира. Физики считали, что это неподвижная среда, заполняющая всю Вселенную, в которой свет распространяется так же, как звук в воздухе. Согласно существовавшим тогда теориям, эфир должен был непременно обнаружиться в некоторых явлениях, и поэтому для доказательства его существования ставились различные опыты. Так, при наличии эфира скорость света должна была зависеть от движения Земли относительно неподвижного эфира.

Постановка таких опытов требовала исключительно точной аппаратуры и большого искусства экспериментаторов. Обе эти предпосылки были налицо у Альберта Майкельсона. В 1881 г. он использовал изобретенный им интерферометр, чтобы решить вопрос об эфире. К своему величайшему удивлению, исследователи обнаружили, что скорость света оказывается одинаковой во всех направлениях

[7]. Это означало крушение концепции эфира. Однако большинство физиков, не желая отказываться от укоренившихся теорий, предпочли отвергнуть результаты Майкельсона. Только Хендрик Антон Лоренц в Лейдене и независимо от него Фрэнсис Фицджеральд в Дублине попытались объяснить результаты наблюдений Майкельсона, выдвинув гипотезу (1892 г.), что при движении со скоростью, близкой к скорости света, размеры тела в направлении движения сокращаются. В 1905 г. Эйнштейн доказал, что сокращение Лоренца — Фицджеральда действительно имеет место. Но идея, предложенная этими двумя учеными с единственной целью — «спасти эфир», приобрела в теории относительности другой смысл.

Основой для этих теоретических достижений явились исключительно точные измерения Альберта Майкельсона. В 1907 г. он был удостоен Нобелевской премии за создание прецизионных оптических инструментов и выполненные с их помощью исследования в спектроскопии и метрологии.

В 30-е годы XIX в. была открыта фотография. Всего за несколько десятилетий она из сложного лабораторного процесса, доступного немногим, превратилась в увлечение миллионов людей. Уже в конце XIX в. крупные фирмы производили столь совершенные фотоаппараты, что фотографу-любителю оставалось просто нажимать спуск. Лишь один вопрос оставался неразрешимым: изображения были только черно-белыми. Единственный способ получения цветных снимков состоял в том, чтобы делать негативы трех основных цветов и накладывать их друг на друга. Но это довольно сложный и трудоемкий способ. Поэтому новость о том, что французский физик Габриель Липман изобрел в 1891 г. метод цветной фотографии, вызвала большой интерес.

Липман вставлял фотопластинку в специальную кассету со ртутью, которая создавала абсолютно ровную зеркальную поверхность. Свет, проходя через эмульсию, отражается от зеркала и возвращается обратно. При интерференции между падающим и отраженным лучами образуются стоячие волны, в результате чего кристаллы серебра в проявленной эмульсии располагаются слоями. При рассмотрении такого негатива свет отражается от него таким образом, что изображение видно в настоящих цветах.

Метод Липмана нашел применение в спектроскопии, однако для практической фотографии он оказался неудобным. Трудности вызывали кассета с ртутью и очень большое время экспозиции (1 мин). Сама же по себе идея очень интересна, и некоторые специалисты даже считают, что Габриель Липман был близок к открытию голографии. За свои оригинальные работы французский ученый получил в 1908 г. Нобелевскую премию по физике.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже