Читаем Ноль: биография опасной идеи полностью

В области чисел умножение означает растяжение — в буквальном смысле слова. Представьте себе, что числовая ось — это резиновая лента с делениями на ней (рис. 4). Умножение на два может рассматриваться как растяжение резиновой ленты вдвое: то деление, которое приходилось на отметку «один», теперь переместилось на «два»; приходившееся на «три» — на «шесть». Аналогично умножение на одну вторую сходно с некоторым сжатием резиновой ленты: деление на «два» перемещается на «один», деление на «три» — на «полтора».


Рис. 4. Резиновая лента для умножения


Но что происходит при умножении на ноль? Сколько бы раз ни взять ноль, все равно будет ноль, и все деления соберутся на ноле. Резиновая лента порвалась. Вся числовая ось нарушилась.

К несчастью, нет способа обойти этот неприятный факт. Любое число ноль раз — ноль; это свойство нашей системы счисления. Чтобы в повседневно используемых числах был смысл, они должны обладать тем, что именуется свойством дистрибутивности, что лучше всего видно на примере. Представьте себе, что в магазине игрушек мячи продаются по две штуки, а кубики — по три. Соседний магазин игрушек торгует наборами из двух мячей и трех кубиков. Каждая упаковка из двух мячей и каждая упаковка из трех кубиков — такой же один предмет, как и упаковка с набором мячей и кубиков из соседнего магазина. Если быть последовательным, то покупка семи упаковок мячей и семи упаковок кубиков в первом магазине должна быть тем же самым, что и покупка семи наборов во втором. Это и есть свойство дистрибутивности. Используя математическую запись, мы выразили бы это так: 7 × 2 + 7 × 3 = 7 × (2 + 3). Все получается правильно.

Если же применить это свойство к нолю, получается нечто странное. Мы знаем, что 0 + 0 = 0. Возьмем в качестве примера число 2. 2 + 0 = 2 + (0 + 0); согласно свойству дистрибутивности, мы также знаем, что 2 × (0 + 0) — то же самое, что 2 × 0 + 2 × 0. Однако это означает, что 2 × 0 = 2 × 0 + 2 × 0. Чем бы ни было 2 × 0, когда вы прибавляете это число к самому себе, оно остается тем же самым, очень похожим на ноль. На самом деле это он и есть. Если вычесть 2 × 0 из обеих частей равенства, мы увидим, что 0 = 2 × 0. Таким образом, что бы вы ни делали, умножение числа на ноль дает ноль. Это зловредное число сжимает числовую ось в точку. Однако сколь бы досадным ни было это свойство, истинная сила ноля делается очевидной при делении, а не умножении.

Если умножение растягивает числовую ось, то деление сжимает ее. Умножьте какое-нибудь число на два, и вы растянете резиновую ленту — числовую ось — вдвое; разделите результат на два, и резиновая лента сожмется вдвое, произведя действие, обратное умножению. Производя деление, вы уничтожаете следствие умножения: метка на резиновой ленте, переместившаяся на новое место, возвращается в прежнее положение.

Мы видели, что произошло при умножении числа на ноль: числовая ось была уничтожена. Деление на ноль должно было быть противоположностью умножению на ноль — оно должно было бы восстановить числовую ось. К несчастью, этого не происходит.

В предыдущем примере мы видели, что 2 × 0 есть 0. Таким образом, чтобы совершить действие, обратное умножению, мы должны предположить, что (2 × 0) / 0 вернет нас к 2. Точно так же (3 × 0) / 0 должно вернуть нас к 3, (4 × 0) / 0 — к 4… Однако каждое из чисел 2 × 0, 3 × 0, 4 × 0, как мы видели, равно 0, так что (2 × 0) / 0 = 0 / 0, (3 × 0) / 0 = 0 / 0, (4 × 0) / 0 = 0 / 0. Увы, это означает, что 0 / 0 = 2, а также 0 / 0 = 3, 0 / 0 = 4… Это же бессмыслица!

Странные вещи происходят и в том случае, если мы посмотрим на 1 / 0 с другой точки зрения. Умножение на ноль должно произвести действие, обратное делению на ноль, так что 1 / 0 × 0 должно быть равно 1. Однако мы видели, что любое число, умноженное на ноль, дает ноль. Нет такого числа, которое, умноженное на ноль, давало бы 1, по крайней мере, среди чисел, с которыми мы встречались.

Хуже всего то, что если вы необдуманно разделите на ноль, вы можете разрушить все основы логики и математики. Достаточно всего один раз — один-единственный — разделить на ноль, и это позволит вам математически доказать все что угодно. Вы сможете доказать, что 1 + 1 = 42, а из этого вывести, что Эдгар Гувер был инопланетянином, Уильям Шекспир — узбеком, и даже что небо — в горошек. (Приложение А поможет вам доказать, что Уинстон Черчилль был морковкой.)

Умножение на ноль уничтожает числовую ось. Однако деление на ноль разрушает всю систему математики.

Это простое число обладает большим могуществом. Оно стало самым важным математическим инструментом. Однако благодаря своим странным математическим и философским свойствам ноль пришел в столкновение с фундаментальной западной философией.

Глава 2

Из ничего ничто и выйдет

Запад отвергает ноль

Ничто не возникает из ничего.

Лукреций. «О природе вещей»[4]
Перейти на страницу:

Похожие книги

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Жизненными циклами всего на свете – от растений и животных до городов, в которых мы живем, – управляют универсальные скрытые законы. Об этих законах – законах масштабирования – рассказывает один из самых авторитетных ученых нашего времени, чьи исследования совершили переворот в науке. «Эта книга – об объединенной и объединяющей системе концепций, которая позволила бы подступиться к некоторым из крупнейших задач и вопросов, над которыми мы бьемся сегодня, от стремительной урбанизации, роста населения и глобальной устойчивости до понимания природы рака, обмена веществ и причин старения и смерти. О замечательном сходстве между принципами действия городов, компаний и наших собственных тел и о том, почему все они представляют собой вариации одной общей темы, а их организация, структура и динамика с поразительной систематичностью проявляют сходные черты. Общим для всех них является то, что все они, будь то молекулы, клетки или люди, – чрезвычайно сложные системы, состоящие из огромного числа индивидуальных компонентов, взаимосвязанных, взаимодействующих и развивающихся с использованием сетевых структур, существующих на нескольких разных пространственных и временных масштабах…» Джеффри Уэст

Джеффри Уэст

Деловая литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Финансы и бизнес
Экономика творчества в XXI веке. Как писателям, художникам, музыкантам и другим творцам зарабатывать на жизнь в век цифровых технологий
Экономика творчества в XXI веке. Как писателям, художникам, музыкантам и другим творцам зарабатывать на жизнь в век цифровых технологий

Злободневный интеллектуальный нон-фикшн, в котором рассматривается вопрос: как людям творческих профессий зарабатывать на жизнь в век цифровых технологий.Основываясь на интервью с писателями, музыкантами, художниками, артистами, автор книги утверждает, что если в эпоху Возрождения художники были ремесленниками, в XIX веке – богемой, в XX веке – профессионалами, то в цифровую эпоху возникает новая парадигма, которая меняет наши представления о природе искусства и роли художника в обществе.Уильям Дерезевиц – американский писатель, эссеист и литературный критик. Номинант и лауреат национальных премий.В формате PDF A4 сохранён издательский дизайн.

Уильям Дерезевиц

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература