Объясню на примере, как работает один из вариантов машинного обучения[370]
. Допустим, компьютер должен распознавать, на каких томографических снимках есть опухоль, а на каких нет. Сначала в компьютер загружается обучающий набор изображений с информацией о диагнозах. Если было загружено достаточное количество достоверно классифицированных изображений, машина может научиться самостоятельно определять закономерности, причем ориентируясь на мелкие детали, которые ускользают от человеческого глаза. После того как компьютер изучит достаточное количество данных (изображение A: опухоль; изображение B: нет опухоли; изображение C: нет опухоли и т. д.), он может применять полученные знания к тем снимкам, которые не были включены в обучающий набор.Приведенный пример – отнюдь не научная фантастика. Несколько исследовательских групп смогли доказать, что разработанный ими искусственный интеллект лучше справляется с выявлением рака груди, чем опытные врачи[371]
. Кажется, для радиологов настают не лучшие времена.Между тем в области машинного обучения уже существуют очень мощные алгоритмы, которые могут делать хорошие прогнозы на основе различных источников данных (изображений, текста и т. д.) по широкому спектру переменных. Поэтому внедрение машинного обучения в дополнение к привычным статистическим методам исследований может помочь психодиагностике совершить качественный скачок. Но хотелось бы проиллюстрировать не только потенциал, но и возможные опасности этого метода.
Как мы знаем, цифровые следы создаются не только при наборе текста на смартфоне или клавиатуре, но и когда наше лицо попадает в объектив камеры телефона. Например, многие из нас смотрят в камеру, чтобы разблокировать смартфон, ведь в последние годы благодаря использованию ИИ значительно усовершенствовалась система распознавания лиц. Но так ли это хорошо?
Три года назад в одной из американских научных статей утверждалось, что искусственный интеллект научился определять сексуальную ориентацию человека по чертам лица, таким как форма носа или челюсти. Если бы это действительно было так, то гомосексуальным мужчинам было бы смертельно опасно ехать в Саудовскую Аравию и приветливо улыбаться в камеру на иммиграционном контроле.
Если упрощать, Йилун Вонг и Михал Косински (да, снова он) позаимствовали для исследования сексуальной ориентации метод из моего примера со снимками компьютерной томографии[372]
. Ученые предварительно отобрали 35 326 фотографий с сайтов знакомств, дополнили их указанными самими пользователями данными о половой принадлежности – своей и потенциального партнера. В ходе исследования Вонгу и Косински удалось добиться достаточно высокой точности: 81 % среди мужчин и 71 % среди женщин. Имеется в виду, что компьютеру удавалось достаточно точно определить сексуальную ориентацию, если ему предлагалось сопоставить снимки и отличить гетеросексуала от гомосексуала. Иными словами, ИИ классифицировал пользователей с точностью, значительно превышающей случайность; но это вовсе не означает, что компьютер справился бы с задачей так же хорошо, если бы не сопоставлял снимки двух категорий пользователей[373].Это исследование взбудоражило ученых по всему миру. Йилун Вонг и Михал Косински в своей работе прямо указывают на опасность злоупотребления подобным алгоритмом, ведь на свое лицо, в отличие от лайков и иных цифровых следов, человек никак повлиять не может.
Но что нам дают результаты этого весьма неоднозначного исследования? Интересную трактовку можно найти в блоге Блеза Агуэры-и-Аркаса. Он отмечает, что лицо человека может быть подвержено влиянию «духа времени» или модных тенденций, что, в свою очередь, могло бы дать информацию о сексуальной ориентации в исследовании. Итак, действительно ли компьютер предсказывал сексуальную ориентацию человека, руководствуясь именно формой лица? Вот что Агуэра-и-Аркас пишет о составных (то есть усредненных) изображениях из работы Вонга и Косински: «Среднестатистическая гетеросексуальная женщина использует тени для век, а среднестатистическая лесбиянка – нет. На гомосексуальном мужчине четче видны очки, на гомосексуальной женщине – в меньшей степени, в то время как на гетеросексуальных мужчине и женщине очков не видно вообще. Может ли быть так, что искусственный интеллект (алгоритм) определяет сексуальную ориентацию не по форме лица, а, скорее, по шаблонам, связанным с внешностью, выражением лица и образом жизни?» Кстати, для лучшего понимания замечаний Агуэры-и-Аркаса советую лично взглянуть на усредненные изображения (см. ссылку или оригинал статьи)[374]
.