Читаем Новый этап в развитии физики рентгеновских лучей полностью

Статья построена как техническое описание области. Сначала обсуждается вопрос о том, какие длины волн рентгеновских лучей наиболее подходят для целей литографии. Затем идет речь о выборе материала для мембран, из которых изготовляются маски. Годятся силиконовые мембраны, нитрид кремния, органические пленки. Каждый из них имеет свои достоинства и недостатки. Далее рассматриваются подходящие источники рентгеновских лучей. Для литографии не подходят обычные трубки, поскольку излучаемый ими спектр содержит лучи слишком жесткие, чтобы обеспечить контрастность маски и заставить их поглощаться в достаточной степени в материале резиста. Авторы приводят схемы нескольких подходящих установок, но в конце рассмотрения напоминают, что к. п. д. всех подобных установок, как известно, очень низкий, а именно меньше одной десятой доли процента.

Достаточно успешными были попытки использовать для литографии в качестве источника рентгеновских лучей горячую плазму, создаваемую неодимовым лазером, а также синхротронное излучение.

Пленки органических полимеров служат в качестве резистов. Авторы приводят подробные данные в отношении полиметилметакрилата. Фотографии полученных в этом материале профилей с помощью α-излучения алюминия оставляют сильное впечатление (использовались золотые маски толщиной 0,9 и 0,4 мкм; начальная толщина резиста была 1,5 мкм

). В статье приводится много фотографий и таблиц, дающих представление о достигаемом разрешении. Рассматриваются все шаги создания на объекте интегральной схемы и дается описание технологического процесса, выбранного авторами. Рентгеновская литография уже использовалась для создания диодов, полевых и других транзисторов. Авторы высоко оценивают будущее этого метода.

Остановимся на другой большой статье сборника, трактующей проблемы рентгеновской и нейтронной интерферометрии. Этот метод был предложен 13 лет назад.

Интерферометрия волн малой длины является мощным инструментом исследования дефектов в кристаллах, близких к идеальным. Эта же техника позволяет измерять рассеивающие способности атомов и абсолютные значения параметров решетки кристаллов.

Осуществление интерференции рентгеновских лучей и нейтронов происходит совсем не так, как в оптике. Из крупных монокристаллов кремния, германия, кварца (я перечисляю вещества, которые больше всего были изучены этим методом) изготовляются причудливые геометрические фигуры, позволяющие расщепить первичный луч так, чтобы две компоненты были раздвинуты по крайней мере на 0,5 см. Далее лучи отражаются от кристаллических плоскостей (чаще используется так называемое лауэвское отражение, т. е. тот случай, когда при селективном отражении от атомных плоскостей кристалла луч входит в кристалл с одной стороны, а выходит с другой) и потом сводятся в одну точку с той или иной разностью хода. Изготовление интерферометров происходит с помощью алмазной пилы и последующей полировки смесью кислот.

Основное применение – это дефектоскопия. Интерференция создает муаровые картины, весьма чувствительные к дефектам, возникающим из-за самых незначительных смещений или поворотов отражающих атомных плоскостей. Метод позволяет обнаружить одиночные дислокации, точечные дефекты и т.д. Вполне возможно, что методика рентгеновской и нейтронной интерферометрии благодаря своей большой точности позволит решать весьма тонкие задачи, такие, как, скажем, выяснение роли тяготения в распространении нейтронов. Эти эксперименты представляют интерес для решения проблемы рентгеновских лазеров, для решения фазовой проблемы в голографии.

К сожалению, статья написана не лучшим образом. Много математических расчетов и лишь бегло изложены физические принципы и идеи, лежащие в основе этого интересного метода.

В Советском Союзе, насколько известно пишущему эти строки, работы в области рентгеновской интерферометрии ведутся лишь на кафедре физики твердого тела в Ереванском университете под руководством П.А. Безирганяна. Опубликованные труды этой группы цитируются в обзоре.

Перейти на страницу:

Похожие книги

Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука