Читаем Новый Мир ( № 3 2011) полностью

Формальная постановка задачи имела далеко идущие последствия для очень многих областей математики, экономики и биологии. Практически сразу несколькими математиками было замечено, что исчерпывание продовольственных (и других) ресурсов влияет на сам рост популяции: чем ближе объем популяции подходит к исчерпанию ресурса, тем ее рост медленнее, он может стабилизироваться, и тогда популяция переходит в стадию гомеостаза.

В 1834 году бельгийский математик Пьер Франсуа Ферхюльст(1804 — 1849) модифицировал модель Мальтуса и предложил так называемое логистическое уравнение:

 

dX = аX — BX2,

 

где в уравнение Мальтуса добавлен еще один член:BX2,B— коэффициент,  отражающий интенсивность воздействия внутренних сдерживающих механизмов на скорость роста популяции. Значение

BX2— прямо пропорционально числу столкновений особей между собой. В свою очередь, число столкновений особей в популяции пропорционально скорости распространения различных заболеваний, напряженности конкурентных взаимоотношений, что способствует увеличению смертности и снижению рождаемости. То есть даже если продовольственных ресурсов достаточно, всем их все равно не хватит, что очень похоже на действительность.

Если объем популяции лишь немногим больше ноля, величинаBX2мала по сравнению с

Хи может быть отброшена при решении, то есть при малыхХмодель Мальтуса верна с высокой степенью точности; при значенияхХ
, приближающихся к значениям исчерпания ресурса, величинойBX2пренебрегать уже нельзя — этот член влияет на решение и может привести его к стабилизации, то есть система придет в стадию гомеостаза.

Модель Мальтуса была модифицирована еще много раз. В XX веке в нее был добавлен уточняющий член, ответственный за диффузию или скорость расселения по новым территориям, была предложена модель, учитывающая рост ресурса, что совершенно разумно для популяции не животных, а людей, которые могут производить ресурс, а не только его потреблять, — в этом случае стабилизация наступит на более высоком уровне.

Мрачные прогнозы Мальтуса не оправдались, он исследовал ситуацию в очень спокойный период — большой удаленности от уровня исчерпания ресурса, только в этот момент население и могло расти в геометрической прогрессии.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже