Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

О чем в действительности говорит нам описание в терминах волновых функций? Прежде всего напомним наше определение импульсного состояния. Это тот случай, когда импульс известен точно. Кривая имеет вид винтовой линии, всюду остающейся на одном и том же расстоянии от своей оси. И поэтому в любой точке амплитуды различных положений имеют равные квадраты модулей. Таким образом, если производится измерение положения, то вероятность найти частицу в какой-нибудь одной точке такая же, как вероятность найти ее в любой другой точке. Действительно, положение частицы оказывается полностью неопределенным! А как обстоит дело с конфигурационным состоянием? В этом случае -кривая представляет собой дельта-функцию Дирака. Частица точно локализована в том месте, где находится пик дельта-функции, во всех остальных точках амплитуды равны нулю. Импульсные амплитуды лучше всего определять, перейдя в импульсное пространство. В этом случае их '-кривые имеют вид винтовых линий, так что амплитуды различных импульсов все имеют равные квадраты модулей. Результат измерения импульса частицы становится теперь совершенно неопределенным!

Интересно рассмотреть промежуточный случай, когда координаты и импульсы отчасти ограничены, но только лишь в той степени, которая разрешена соотношением неопределенности Гейзенберга. Кривая и соответствующая ей кривая '(являющиеся Фурье-преобразованиями друг друга) для такого случая изображены на рис. 6.14.

Рис. 6.14.Волновые пакеты, локализованные как в конфигурационном пространстве, так и в импульсном пространстве

Обратите внимание на то, что расстояние от каждой из кривых до оси существенно отлично от нуля лишь в весьма малой области. Вдали от этой области кривые очень плотно прижимаются к оси. Это означает, что квадраты модуля заметно отличны от нуля только в очень ограниченной области как в конфигурационном пространстве, так и в импульсном пространстве. В этом случае частица может быть локализована в пространстве, хотя соответствующий пик имеет некоторую ширину; аналогичным образом, импульс также достаточно хорошо определен, поэтому частица движется с достаточно хорошо определенной скоростью, а расплывание пика, характеризующего ее положение в пространстве, происходит не слишком быстро. Такое квантовое состояние принято называть волновым пакетом; обычно волновой пакет считается лучшим квантовотеоретическим приближением к классической частице. Однако из-за «размазанности» в значении импульса (т. е. скорости) следует, что волновой пакет со временем расплывается. И чем более он локализован в начальный момент времени в пространстве, тем быстрее он расплывается.

Эволюционные процедуры U и R

В приведенном выше описании временной эволюции волнового пакета неявно содержится уравнение Шредингера, которое говорит нам о том, как именно эволюционирует во времени волновой пакет. Действительно, уравнение Шредингера гласит, что каждая компонента разложения по импульсным состояниям («чистым тонам») двигается со скоростью, равной величине с2

, деленной на скорость классической частицы, имеющей импульс данной компоненты. На самом деле, уравнение Шредингера математически сформулировано гораздо более лаконично. Мы обратимся к его точной записи несколько позднее. Оно по форме несколько напоминает уравнения Гамильтона или Максвелла (будучи тесно связано с обоими) и так же, как и эти уравнения, дает полностью детерминистскуюэволюцию волновой функции, если волновая функция задана в какой-либо один момент времени (см. гл.6 «Уравнение Шредингера; уравнение Дирака»)!

Полагая, что описывает мир в его «реальности», мы не обнаружим никакого индетерминизма, который, как предполагают некоторые, внутренне присущ квантовой теории, — не обнаружим, пока волновая функция удовлетворяет детерминистской эволюции Шредингера. Будем называть это эволюционной U-процедурой. Однако всякий раз, когда мы «производим измерения», увеличивая квантовые эффекты до классического уровня, мы изменяем правила. Теперь вместо U

мы используем совершенно другую процедуру, которую я обозначу R. Она состоит в образовании квадратов модулей квантовых амплитуд для получения классических вероятностей! [145]Именно эта и толькоэта
R-процедура привносит неопределенности и вероятности в квантовую теорию.

Перейти на страницу:

Похожие книги