Несомненно, это был искомый критерий — который я впоследствии назвал «ловушечная поверхность» — и мне уже не понадобилось много времени, чтобы набросать план доказательства искомой теоремы (Пенроуз [1965]). И хотя прошло еще немало времени, прежде чем было сформулировано математически строгое доказательство — ключевое место в нем сохранила та первоначальная идея, которая пришла мне в голову при пересечении улицы. (Я иногда пытаюсь представить себе, что было бы, если бы в течении этого дня произошло
Эта история подводит меня к еще одному вопросу, связанному с вдохновением и озарением, и касающемся той более чем существенной роли, которую играют при формировании суждений
«…ясно, что никакое значительное открытие или изобретение не может быть сделано без сознательного стремления к нему. Но в случае с Пуанкаре мы видим и другое — чувство прекрасного, которое сыграло свою роль необходимого средства изысканий. И мы приходим к двойному заключению: что изобретение — это выбор; что критерием этого выбора служит чувство научной красоты».
Более того, Дирак [1982], например, непоколебим в убеждении, что именно его
Я нисколько не сомневаюсь в том, что для меня значение эстетических критериев для мышления трудно переоценить — как в случае ощущения «уверенности» при спонтанном возникновении идей в минуты «вдохновения»; так и в отношении более «прозаических» решений, которые постоянно приходится находить, продвигаясь к желанной цели. Я писал об этом еще в связи с открытием непериодичных «плиточных» наборов замощений, показанных на рис. 10.3 (гл.10 «„Плиточные“ структуры и квазикристаллы») и рис. 4.11 (гл.4 «Некоторые примеры нерекурсивной математики»). Бесспорно, именно эстетичность первого набора — не только внешний вид, но также и его интригующие математические свойства — позволили мне интуитивно (возможно, в виде «вспышки», но только лишь с
На мой взгляд очевидно, что эстетические критерии важны не только при формировании спонтанных суждений, являющихся результатом озарения, но и гораздо чаще — в каждом суждении, которое появляется в ходе математической (или, говоря в целом, научной) работы. Строгое доказательство — это обычно