Читаем О движении полностью

В каждый момент можно считать, что она движется по двум направлениям: во-первых, по касательной к кругу, то-есть по направлению перпендикуляра к шнурку; во-вторых, по направлению к центру круга — к руке, держащей конец шнурка.

Значит, в течение очень короткого времени гирька перемещается по диагонали параллелограмма этих двух движений. Из сложения очень большого числа таких перемещений и слагается криволинейное движение гирьки.

Пращник сообщает камню круговое движение. Когда он выпускает из рук один конец веревки, то камень летит по касательной к описываемому им кругу.


Наконец, от внимания древних механиков не ускользнуло, что удар действует гораздо сильнее, чем давление.

Ударяя, например, молотком по вертикальному клину, можно вогнать его в раскалываемое бревно. Но сколько бы ни лежал этот молоток сверху клина, он не произведет никакого заметного действия.

Объяснение разницы между ударом и давлением, конечно, намного превышало механические познания древних ученых. Оно стало возможным только через два тысячелетия — после глубоких исследований голландского математика Гюйгенса.

Закон рычага, параллелограмм скоростей и представление о круговом движении как получающемся из сложения прямолинейных движений — вот то положительное, что дал Аристотель для механики. Дальнейшее ее развитие в античное время зависело от применения к ней математики.

Возникновение математики у греков

Первые попытки приложения математики к механике были сделаны еще Аристотелем и его ближайшими последователями. В «Проблемах механики» впервые встречаются чертежи и буквенные обозначения величин. Но математические познания древних греков были гораздо значительнее, чем примененные философами в механике.

Греческая математика возникла не на «пустом месте». Египтяне и вавилоняне значительно ранее древних греков обладали большими по тому времени математическими познаниями. Находясь в постоянных сношениях с этими народами, греки могли пользоваться уже имевшимися знаниями и развивать их дальше.

Одновременно возникла математика и у индийцев. После похода Александра Македонского в Индию на границе этой страны были основаны небольшие греческие государства. Через их посредство Греция поддерживала торговые отношения и обмен знаниями с народами Индии.

Еще в IV веке до н. э. строителям жертвенников в Индии были известны свойства катетов и гипотенузы прямоугольного треугольника. Индийцы сформулировали их в следующем выражении: «Диагональ прямоугольника производит то, что производят отдельно длинная и короткая стороны прямоугольника», то-есть им была известна теорема Пифагора.

Позднее именно индийцы придумали знаки для обозначения чисел и нуля, которые были заимствованы у них арабами, а от них перешли как «арабские» в Европу. Индийцам принадлежит и честь изобретения «позиционной» системы написания чисел: в ней каждая цифра обозначает десятки, сотни и так далее, в зависимости от места.

В V–VI веках н. э. дроби изображались индийцами так же, как и теперь: вверху — числитель, внизу — знаменатель; только они не были разделены чертой.

Математики Индии уже противопоставляли положительным величинам отрицательные, над которыми для отличия ставилась точка. Они признавали отрицательные корни уравнений, считавшиеся недопустимыми даже в III–IV веках знаменитым греческим математиком Диофантом.

Положительным количествам, «имуществу», они противопоставляли отрицательные— «долг».

Задачи индийских математиков большей частью имели необычайную для нас форму. Вот, например, одна из них:

«Из пчелиного роя 1/4 опустилась на один цветок, а 2/3 полетело на другой цветок. Одна пчела, равно привлекаемая сладостным благоуханием обоих цветков, жужжит в воздухе. Скажи мне, прелестная женщина, сколько было всего пчел?»

Решение этих задач требовало знания уравнений как первой степени, так и квадратных, которые уже были известны индийцам.

Греческие философы поняли практическое значение математики, как только познакомились с геометрией в Египте.

Философ Фалес (конец VII — начало VI века до н. э.) и его ученик Анаксимандр (около 610–546 до н. э.) уже применяли свои геометрические познания к решению астрономических задач.

Первые греческие математики обладали лишь элементарными познаниями. Фалесу были известны свойства равнобедренного треугольника, равенство вертикальных углов (то-есть образованных пересечением двух линий и лежащих друг против друга), деление на две равные части круга его диаметром. Эти знания он заимствовал у египетских жрецов.

«Побывав в Египте, — гласит старинное греческое предание, — Фалес привез в Элладу геометрию. Многое он открыл сам, зачатки многого передал своим преемникам». Но, заимствовав математические познания у египтян и вавилонян, греки стремились развить их, привести в систему и лишить ореола таинственности.

Перейти на страницу:

Все книги серии Школьная библиотека (Детгиз)

Дом с волшебными окнами. Повести
Дом с волшебными окнами. Повести

В авторский сборник Эсфири Михайловны Эмден  включены повести:«Приключения маленького актера» — рис. Б. Калаушина«Дом с волшебными окнами» — рис. Н. Радлова«Школьный год Марина Петровой» — рис. Н. Калиты1. Главный герой «Приключений маленького актера» (1958) — добрый и жизнерадостный игрушечный Петрушка — единственный друг девочки Саши. Но сидеть на одном месте не в его характере, он должен действовать, ему нужен театр, представления, публика: ведь Петрушка — прирождённый актёр…2. «Дом с волшебными окнами» (1959) — увлекательная новогодняя сказка. В этой повести-сказке может случиться многое. В один тихий новогодний вечер вдруг откроется в комнату дверь, и вместе с облаком морозного пара войдёт Бабушка-кукла и позовёт тебя в Дом с волшебными окнами…3. В повести «Школьный год Марины Петровой» (1956) мы встречаемся с весёлой, иногда беспечной и упрямой, но талантливой Мариной, ученицей музыкальной школы. В этой повести уже нет сказки. Но зато как увлекателен этот мир музыки, мир настоящего искусства!

Борис Матвеевич Калаушин , Николай Иванович Калита , Николай Эрнестович Радлов , Эсфирь Михайловна Эмден

Проза для детей / Детская проза / Сказки / Книги Для Детей

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука