Читаем О том, чего мы не можем знать. Путешествие к рубежам знаний полностью

«Задача о ставках» была еще интереснее. Предположим, что два игрока – назовем их Паскаль и Ферма – бросают игральную кость. Ферма выигрывает партию, если на кости выпадает 4 или более очков; в противном случае эту партию выигрывает Паскаль. Таким образом, при каждом броске кости у каждого из них есть половинный шанс на выигрыш партии. Они поставили на кон 64 фунта, которые достанутся тому, кто первым выиграет три партии. Однако игру прерывают, и продолжить ее невозможно. К этому моменту Ферма выиграл две партии, а Паскаль – одну. Как следует разделить между ними 64 фунта?

Традиционные попытки решения этой задачи были сосредоточены на том, что произошло в прошлом. Может быть, раз Ферма выиграл в 2 раза больше партий, чем Паскаль, то и его выигрыш должен быть в 2 раза больше? Но, если, например, перед тем как игра была остановлена, Ферма выиграл всего одну партию, такое решение становится бессмысленным. Паскаль в таком случае не получает ничего, хотя по-прежнему имеет шанс на победу. Никколо Фонтана Тарталья, современник Кардано, после долгих размышлений пришел к выводу, что решения не существует: «Это вопрос скорее юридический, чем математический, и любой вариант разделения выигрыша может стать поводом для тяжбы».

Однако другие не были готовы признать свое поражение. Они обратили внимание не на прошлое, а на то, что могло бы случиться в будущем. В противоположность первой задаче здесь они попытались не предсказать, как ляжет кость, а представить все возможные варианты будущего и разделить выигрыш в соответствии с разными исходами, благоприятными для того или другого игрока.

Здесь легко впасть в заблуждение. Кажется, что существует три сценария. Если следующую партию выигрывает Ферма, он забирает себе все 64 фунта. Если следующую партию выигрывает Паскаль, то играется еще одна, финальная партия, которую может выиграть либо Паскаль, либо Ферма. Поскольку в двух из этих трех случаев выигрывает Ферма, то, видимо, ему причитаются две трети ставки. В эту-то ловушку и попал де Мере. Паскаль утверждает, что это решение ложно: «Кавалер де Мере – человек очень остроумный, но он вовсе не математик; это, как вы знаете, огромный недостаток»[15]. Вот уж действительно!

Паскаль же, напротив, был великий математик, и он считал, что выигрыш следует разделить иначе. Ферма может выиграть в следующей партии (и получить 64 фунта) с вероятностью 50 %. Но, если в следующей партии выиграет Паскаль, шансы обоих на победу в финальной партии равны, так что выигрыш можно разделить поровну – по 32 фунта каждому. Ферма в любом случае гарантированно получает 32 фунта. Поэтому оставшиеся 32 фунта следует разделить поровну, что в итоге дает Ферма 48 фунтов.

Ферма согласился с анализом Паскаля. «Я ясно вижу, что истина, будь она в Тулузе или в Париже, одна и та же», – писал ему в Тулузу Паскаль.

Пари паскаля

Анализ ставок в игре, разработанный Паскалем и Ферма, можно применить и к гораздо более сложным ситуациям. Паскаль выяснил, что тайна распределения выигрыша сокрыта внутри того, что теперь называют треугольником Паскаля.



Треугольник устроен таким образом, что каждое число в нем равно сумме двух чисел, расположенных непосредственно над ним. Полученные числа определяют, как следует разделить выигрыш в любой прерванной игре. Например, если Ферма до победы не хватает двух выигранных партий, а Паскалю – четырех, нужно взять строку треугольника номер 2 + 4 = 6 и найти сумму первых четырех чисел и сумму последних двух. Эти суммы дают пропорцию, в которой следует разделить выигрыш. В данном случае получается пропорция 1 + 5 + 10 + 10 = 26 к 1 + 5 = 6. Таким образом, Ферма получает 26/32 · 64 = 52 фунта, а Паскаль – 6/32 · 64 = 12 фунтов. В общем случае решение для игры, в которой Ферма не хватает n, а Паскалю – m

выигранных партий, можно найти в (n + m) – й строке треугольника Паскаля.

Есть данные, что французы опоздали с открытием связи между этим треугольником и исходом азартных игр на несколько тысячелетий. Игральные кости и другие методы получения случайных результатов, например «И цзин», издавна использовали в Китае в попытках предсказать будущее. В тексте книги «И цзин», созданном около 3000 лет назад, для случайного выбора гексаграммы, значение которой затем можно истолковать, используется в точности та же таблица, которую Паскаль составил для анализа исходов подбрасывания монет. Однако создателем треугольника считают в наше время Паскаля, а не китайцев.

Паскаль интересовался не только игральными костями. Он предпринял знаменитую попытку приложения своей новой вероятностной математики к величайшему из неизвестных – существованию Бога.

Перейти на страницу:

Похожие книги

Сравнительное образование. Вызовы XXI века
Сравнительное образование. Вызовы XXI века

В монографии на основе методологии сравнительной педагогики рассмотрены состояние, тенденции развития образования в России и в мире. Сопоставительно охарактеризованы направления реформирования общего образования и высшего профессионального образования. Предложен компаративистский анализ стандартизации и диверсификации образования, гражданского, нравственного, религиозного, межнационального воспитания и обучения в общеобразовательной школе, модернизации, интернационализации высших учебных заведений. Монография адресована ученым, преподавателям, бакалаврам, магистрантам, аспирантам, докторантам, всем, кого заботит эффективное развитие образования.

Александр Наумович Джуринский , Александр Н. Джуринский

Детская образовательная литература / Учебники и пособия ВУЗов / Педагогика / Книги Для Детей / Образование и наука
Достаточно ли мы умны, чтобы судить об уме животных?
Достаточно ли мы умны, чтобы судить об уме животных?

В течение большей части прошедшего столетия наука была чрезмерно осторожна и скептична в отношении интеллекта животных. Исследователи поведения животных либо не задумывались об их интеллекте, либо отвергали само это понятие. Большинство обходило эту тему стороной. Но времена меняются. Не проходит и недели, как появляются новые сообщения о сложности познавательных процессов у животных, часто сопровождающиеся видеоматериалами в Интернете в качестве подтверждения.Какие способы коммуникации практикуют животные и есть ли у них подобие речи? Могут ли животные узнавать себя в зеркале? Свойственны ли животным дружба и душевная привязанность? Ведут ли они войны и мирные переговоры? В книге читатели узнают ответы на эти вопросы, а также, например, что крысы могут сожалеть о принятых ими решениях, воро́ны изготавливают инструменты, осьминоги узнают человеческие лица, а специальные нейроны позволяют обезьянам учиться на ошибках друг друга. Ученые открыто говорят о культуре животных, их способности к сопереживанию и дружбе. Запретных тем больше не существует, в том числе и в области разума, который раньше считался исключительной принадлежностью человека.Автор рассказывает об истории этологии, о жестоких спорах с бихевиористами, а главное — об огромной экспериментальной работе и наблюдениях за естественным поведением животных. Анализируя пути становления мыслительных процессов в ходе эволюционной истории различных видов, Франс де Вааль убедительно показывает, что человек в этом ряду — лишь одно из многих мыслящих существ.* * *Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Франс де Вааль

Биология, биофизика, биохимия / Педагогика / Образование и наука