Читаем О том, чего мы не можем знать. Путешествие к рубежам знаний полностью

Итак, мы получили список атомов, из которых, по-видимому, состоит вся материя. Например, наша игральная кость состоит из сочетания атомов углерода, атомов кислорода и атомов водорода, объединенных в структуру, называемую ацетилцеллюлозой. Мое собственное тело тоже в основном состоит из сочетаний тех же атомов, но объединенных в другие структуры. Ацетилцеллюлоза представляет собой однородную структуру, лишенную пузырей, что увеличивает вероятность ее равномерности. Раньше игральные кости делали из нитроцеллюлозы, которую изобрел в 1868 г. Джон Уэсли Хайат. Составленный им коктейль из азотной кислоты, серной кислоты, хлопчатого волокна и камфары давал удивительный материал с высокой прочностью на разрыв, устойчивый к воздействию воды, масел и даже слабых кислот.

Брат Хайата назвал его целлулоидом, и этот материал стали чрезвычайно выгодно использовать для изготовления вещей, которые до того вырезали из рога или слоновой кости. Из этого синтетического пластика изготавливались бильярдные шары и съемные воротнички, фортепианные клавиши и даже игральные кости. В начале XX в. изготовление костей из нитроцеллюлозы было промышленным стандартом, но через несколько десятилетий использования таких костей с ними происходила почти моментальная кристаллизация, и они рассыпались, выделяя газообразную азотную кислоту.

Игральные кости, сделанные для казино Лас-Вегаса в конце 1940-х гг. и избежавшие кристаллизации, стали теперь коллекционными. Моей кости такая судьба не грозит. На следующей иллюстрации показано, как расположены атомы внутри моей кости.



Идентификация этих элементов еще не была доказательством справедливости дискретной модели строения материи. Ничто не говорит о том, что такая картинка ингредиентов игральной кости не может соответствовать какой-нибудь формуле сочетания непрерывных структур. В то время как химики склонялись к атомистическому видению Вселенной, среди физиков такие взгляды были далеко не столь общепринятыми. Тех, кто подобно немецкому физику Людвигу Больцману предлагал атомарную модель материи, в исследовательских лабораториях высмеивали.

Больцман считал атомарную теорию мощным средством интерпретации концепции теплоты, основанной на идее газа, состоящего из мельчайших молекул, которые соударяются друг с другом подобно огромному множеству микроскопических бильярдных шаров. Теплота попросту представляет собой суммарную кинетическую энергию таких движущихся миниатюрных шаров. Применение этой модели в сочетании с вероятностными и статистическими методами позволило ему объяснить макроскопическое поведение газов. Но большинство физиков по-прежнему были привержены идеям непрерывности материи и относились к идеям Больцмана пренебрежительно.

Насмешки над Больцманом дошли до такой степени, что ради публикации своих идей ему пришлось отречься от своей веры в соответствие «бильярдной» теории строения материи действительной реальности и называть ее эвристической моделью. Эрнст Мах, главный противник Больцмана в дискуссии о реальности атомов, издевательски спрашивал его: «Вы сами когда-нибудь видели атом?»

Больцман был подвержен приступам депрессии и, судя по некоторым признакам, мог страдать биполярным расстройством. Считается, что неприятие его идей научным сообществом усугубило его депрессию, под влиянием которой в 1906 г., будучи на отдыхе в Триесте вместе со своей семьей, он и повесился, когда его жена с дочерью ушли купаться.

Его смерть была тем более трагической, что именно в это время стали появляться убедительные доказательства его правоты. Причем подтверждавшие атомистическую картину мира идеи, от которых к тому же было невозможно отмахнуться, принадлежали одному из самых влиятельных физиков. Тем, кто подобно Маху продолжал верить в непрерывную структуру мира, было чрезвычайно непросто объяснить результаты исследования броуновского движения, полученные Эйнштейном и другими.

Пылевой пинг-понг

Хотя обычные оптические микроскопы и не позволяют увидеть отдельные атомы, они позволили ученым XIX в. увидеть воздействие таких атомов на окружающую их среду. Это воздействие называется броуновским движением по имени Роберта Броуна, который в 1827 г. заметил случайное движение мельчайших частиц пыльцы, плавающих на поверхности воды. Поскольку пыльца – вещество органическое, Броун сначала решил, что ее прыжки по поверхности могут быть признаками жизни. Сходное случайное движение угольной пыли, плавающей на поверхности спирта, наблюдалось в 1785 г. голландским ученым Яном Ингенхаузом. Когда Броун увидел, что поведение пыльцы может быть свойственно и неорганической материи, он не мог понять, какие причины могут вызывать такое беспорядочное движение.

Интересно отметить: идею о том, что речь может идти о невидимых атомах, сталкивающихся с более крупными видимыми частицами вещества, высказал еще древнеримский поэт Лукреций в своей философской поэме «О природе вещей»:

Перейти на страницу:

Похожие книги

Сравнительное образование. Вызовы XXI века
Сравнительное образование. Вызовы XXI века

В монографии на основе методологии сравнительной педагогики рассмотрены состояние, тенденции развития образования в России и в мире. Сопоставительно охарактеризованы направления реформирования общего образования и высшего профессионального образования. Предложен компаративистский анализ стандартизации и диверсификации образования, гражданского, нравственного, религиозного, межнационального воспитания и обучения в общеобразовательной школе, модернизации, интернационализации высших учебных заведений. Монография адресована ученым, преподавателям, бакалаврам, магистрантам, аспирантам, докторантам, всем, кого заботит эффективное развитие образования.

Александр Наумович Джуринский , Александр Н. Джуринский

Детская образовательная литература / Учебники и пособия ВУЗов / Педагогика / Книги Для Детей / Образование и наука
Достаточно ли мы умны, чтобы судить об уме животных?
Достаточно ли мы умны, чтобы судить об уме животных?

В течение большей части прошедшего столетия наука была чрезмерно осторожна и скептична в отношении интеллекта животных. Исследователи поведения животных либо не задумывались об их интеллекте, либо отвергали само это понятие. Большинство обходило эту тему стороной. Но времена меняются. Не проходит и недели, как появляются новые сообщения о сложности познавательных процессов у животных, часто сопровождающиеся видеоматериалами в Интернете в качестве подтверждения.Какие способы коммуникации практикуют животные и есть ли у них подобие речи? Могут ли животные узнавать себя в зеркале? Свойственны ли животным дружба и душевная привязанность? Ведут ли они войны и мирные переговоры? В книге читатели узнают ответы на эти вопросы, а также, например, что крысы могут сожалеть о принятых ими решениях, воро́ны изготавливают инструменты, осьминоги узнают человеческие лица, а специальные нейроны позволяют обезьянам учиться на ошибках друг друга. Ученые открыто говорят о культуре животных, их способности к сопереживанию и дружбе. Запретных тем больше не существует, в том числе и в области разума, который раньше считался исключительной принадлежностью человека.Автор рассказывает об истории этологии, о жестоких спорах с бихевиористами, а главное — об огромной экспериментальной работе и наблюдениях за естественным поведением животных. Анализируя пути становления мыслительных процессов в ходе эволюционной истории различных видов, Франс де Вааль убедительно показывает, что человек в этом ряду — лишь одно из многих мыслящих существ.* * *Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Франс де Вааль

Биология, биофизика, биохимия / Педагогика / Образование и наука