Читаем Об интеллекте полностью

С традиционной точки зрения, когда изображение лица поступает в область V1, клетки в нем создают грубый набросок лица в терминах простых линейных сегментов и других элементарных деталей. Этот набросок поступает в V2. Затем V2 делает свое дело с изображением, производя более сложный анализ черт лица, и передает результат в V4, и т. д. Инвариантность и распознавание объекта достигается только тогда, когда информация достигает верхней точки, IT.

К несчастью, с такой точкой зрения на V1, V2 и V4 есть некоторые проблемы. Почему инвариантное представление должно возникать только в IT? Если все кортикальные области выполняют одну и ту же функцию, почему IT Должна быть особенной?

Во-вторых, лицо может появиться на левой стороне вашего V1 или на правой, и вы должны узнать его. Но эксперименты ясно показывают, что несмежные колонки V1 не имеют прямого соединения; левая сторона V1 не может знать, что видит правая. Отступите и подумайте над этим. Различные части V1 явно занимаются похожими вещами, так как все они участвуют в распознавании лица, но в то же время они физически независимы. Подобласти или кластеры V1 физически разъединены, но делают одно и то же.

В конечном счете эксперименты показывают, что все высшие области кортекса получают информацию, сходящуюся от двух или более сенсорных областей ниже по иерархии (рисунок 3). В настоящем мозге десятки областей могут сходиться к ассоциативной области. Но в традиционных интерпретациях нижние сенсорные области, наподобие V1, V2 и V4 имеют различные виды соединений. Каждая рассматривается, как если бы у нее был только один вход — только одна стрелка, идущая снизу — без явного схождения информации от других регионов. V2 получает информацию только от V1 и только. Почему некоторые кортикальные области получают сходящуюся информацию, а другие — нет? Это также несовместимо с идеей Монткастла о едином кортикальном алгоритме.

По этим и другим причинам я пришел к уверенности, что V1, V2 и V4 не должны рассматриваться как единые кортикальные области. Наоборот, каждая является набором множества мелких подобластей. Давайте вернемся к аналогии с обеденной салфеткой — плоской версией кортекса. Давайте воспользуемся авторучкой для разметки всех функциональных областей кортекса на нашей кортикальной салфетке. Наибольшей областью безоговорочно является V1, первичная визуальная область. Следующей была бы V2. Они огромны по сравнению с большинством других областей. Я полагаю, что V1 в действительности должна рассматриваться как множество очень маленьких областей. Вместо одной большой области на салфетке мы нарисовали бы множество маленьких областей, которые все вместе занимали бы область, предназначенную для V1. Другими словами, V1 состоит из нескольких отдельных маленьких кортикальных областей, которые не соединяются со своими соседями напрямую, а только через выше или ниже по иерархии. V1 имела бы наибольшее количество подобластей из всех визуальных областей. V2 также состояла бы из меньшего количества подобластей чуть большего размера. Это же было бы верным и для V4. Но со временем, когда вы доберетесь до области IT, это будет действительно единая область, вот почему у клеток в IT «птицеглазое» видение целого визуального мира.

В этом есть привлекательная симметрия. Давайте взглянем на рисунок 5, на котором показана та же самая иерархия, что и на рисунке 3, за исключением того, что там сенсорная иерархия изображена, как я описал выше. Заметьте, что теперь кортекс везде выглядит одинаковым образом. Возьмите любую область, и вы найдете множество нижних областей, обеспечивающих схождение информации. Принимающие области посылают проекции обратно к входным областям, говоря им, какие паттерны они должны ожидать увидеть далее. Высшие ассоциативные области объединяют информацию от нескольких чувств, таких как зрение или осязание. Нижние области, подобные подобластям V2 объединяют информацию от отдельных подобластей в V1. Области не знают — и, конечно же, не могут знать — что обозначает любой из их входов. Подобластям V2 не нужно знать, что они обрабатывают информацию от нескольких частей V1. Ассоциативным областям не нужно знать, что они обрабатывают информацию от зрения и слуха. Наоборот, цель любой кортикальной области — найти, как соотносятся ее входы, запомнить последовательности корреляций между ними и использовать эту память для предсказания того, как входы поведут себя в будущем. Кортекс есть кортекс. Везде происходит один и тот же процесс: общий кортикальный алгоритм.

Рисунок 5. Альтернативный взгляд на кортикальную иерархию.

Перейти на страницу:

Похожие книги

Киберкрепость: всестороннее руководство по компьютерной безопасности
Киберкрепость: всестороннее руководство по компьютерной безопасности

Как обеспечить надежную защиту в эпоху, когда кибератаки становятся все более продвинутыми? Каковы последствия уязвимости цифровых систем? Петр Левашов, экс-хакер с богатым бэкграундом, рассматривает все грани кибербезопасности, начиная с базовых принципов и заканчивая новейшими технологиями.Читатели познакомятся с:• основами компьютерной безопасности и актуальными методами защиты;• современными методами шифрования данных и криптографии;• процедурами ответа на инциденты и восстановления после катастроф;• юридическими и регуляторными требованиями к компьютерной безопасности.Автор использует свой уникальный опыт, чтобы предоставить читателям углубленное понимание кибербезопасности. Его подход охватывает теоретические знания и практическую подготовку, делая этот материал доступным для профессионалов и новичков.

Пётр Юрьевич Левашов

Зарубежная компьютерная, околокомпьютерная литература
Самоучитель UML
Самоучитель UML

Самоучитель UMLПервое издание.В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы. Цель книги – помочь программистам освоить новую методологию разработки корпоративных программных приложений для последующего применения полученных знаний с использованием соответствующих CASE-инструментов.

Александр Васильевич Леоненков , Александр Леоненков

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Прочая компьютерная литература / Книги по IT
Оптимизация BIOS. Полный справочник по всем параметрам BIOS и их настройкам
Оптимизация BIOS. Полный справочник по всем параметрам BIOS и их настройкам

Прочтя эту книгу, вы узнаете, что представляет собой BIOS, какие типы BIOS существуют, как получить доступ к BIOS и обновлять ее. Кроме того, в издании рассказано о неполадках в работе BIOS, которые приводят, например, к тому, что ваш компьютер не загружается, или к возникновению ошибок в BIOS. Что делать в этот случае? Как устранить проблему? В книге рассказывается об этом и даже приводится описание загрузки BIOS во флэш-память.Также вы научитесь использовать различные функции BIOS, узнаете, как оптимизировать их с целью улучшения производительности и надежности системы. Вы поймете, почему рекомендуемые установки являются оптимальными.После прочтения книги вы сможете оптимизировать BIOS не хуже профессионала!Книга предназначена для всех пользователей компьютера – как начинающих, которые хотят научиться правильно и грамотно настроить свою машину, используя возможности BIOS, так и профессионалов, для которых книга окажется полезным справочником по всему многообразию настроек BIOS. Перевод: А. Осипов

Адриан Вонг

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Книги по IT