Читаем Об интеллекте полностью

Теперь давайте предположим, что есть еще один класс нейронов, нейроны слоя 3б, которые не возбуждаются, если наша колонка успешно предсказывает поступающий паттерн, но возбуждаются, когда она не предсказала свою активность. Нейроны слоя 3б представляют неожиданный паттерн. Они возбуждаются, когда колонка становится активной неожиданно. Они возбуждаются каждый раз, когда колонка становится активной до того, как обучится. Но по мере обучения предсказанию активности нейроны слоя 3 становятся все спокойнее. Слои 2 и 3б совместно удовлетворяют нашим требованиям. До обучения и те и другие активизируются и дезактивируются в такт с колонкой, но после обучения нейроны слоя 2 остаются постоянно активными, а нейроны слоя 3 становятся молчащими.

Как эти нейроны обучаются этому? Во-первых, давайте рассмотрим, как заставить замолчать нейроны слоя 3б, когда колонка успешно предсказывает свою активность. Скажем, есть другой нейрон, расположенный выше в слое 3б, а слое 3а. У этого нейрона есть также дендриты в слое 1. Его единственная цель — предотвратить возбуждение нейрона в слое 3б, когда он видит соответствующий паттерн в слое 1. Когда нейроны слоя 3а видят заученный паттерн в слое 1, они быстро активизируют тормозящие нейроны, которые предотвращают возбуждение нейронов слоя 3б. Все это могло бы остановить возбуждение нейронов слоя 3б, когда колонка корректно предсказывает активность.

Теперь давайте рассмотрим более сложную задачу — удержание постоянной активности в течение известной последовательности паттернов. Это сложнее, потому что различные множества нейронов в слое 2 во множестве различных колонок должны оставаться активными все вместе, даже когда их индивидуальные колонки неактивны. Вот как я себе это представляю. Нейроны слоя 2 могли бы обучаться становиться активными только от иерархически вышестоящих областей кортекса. Они могли бы формировать синапсы преимущественно с аксонами из слоя 6 из вышестоящих областей. Нейроны слоя 2 могли бы таким образом представлять постоянное имя паттерна от вышестоящей области. Когда вышестоящая область кортекса посылает паттерн вниз к слою 1 нижестоящей области, множество нейронов в слое 2 в нижестоящей области должно стать активными, представляя все колонки, которые являются членами последовательности. Поскольку эти нейроны слоя 2 также проецируются обратно в вышестоящую область, они должны формировать полустабильную группу нейронов. (Это отличается от того, если бы эти нейроны оставались активными постоянно. Они возможно возбуждаются синхронно в некотором ритме). Это как если бы вышестоящая область посылала бы название мелодии в слой 1 ниже. Это событие заставляет множество нейронов слоя 2 возбуждаться, те, у которых колонка должна быть активной, когда слышится мелодия.

В сумме эти механизмы позволяют кортексу запоминать последовательности, делать предсказания и формировать константные представления, или «названия» последовательностей. Это базовая операция для формирования инвариантного представления.

* * *

Как мы делаем предсказания о событиях, которые мы никогда раньше не видели? Как мы выбираем из множества интерпретаций входной информации? Как область кортекса делает конкретное предсказание из инвариантного воспоминания? Я приводил несколько примеров ранее, таких как предсказание точной следующей ноты в мелодии, когда ваша память помнит только интервалы между нотами, притчу о поезде и процесс вспоминания Геттисбергского послания. В этих случаях единственным путем решения проблемы является использование последней конкретной информации для преобразования инвариантного предсказания в конкретное. Перефразируя это в терминах кортекса, мы должны скомбинировать прямой поток информации (актуальную информацию) с обратным потоком информации (предсказание в инвариантной форме).

Вот простой пример, как, я думаю, это происходит. Скажем, вы — область кортекса и вам сказали ожидать музыкальный интервал величиной в квинту. Колонки области представляют всевозможные интервалы, такие как До-Ми, До-Соль, Ре-Ля и тому подобное. Вам необходимо решить, какая из ваших колонок должна активизироваться. Когда область выше говорит вам ожидать квинту, она заставляет нейроны слоя 2 возбуждаться во всех колонках, которые являются квинтами, такие как До-Соль, Ре-Ля и Ми-Си. Нейроны слоя 2 в колонках, представляющих другие интервалы, неактивны. Сейчас вы должны выбрать одну из колонок из множества возможных квинт. Информация, поступающая в вашу область, является конкретной нотой. Если последняя нота, которую вы слышали, была Ре, то все колонки, представляющие интервал, начинающийся на Ре, такие как Ре-Ми и Ре-Си, частично активизируются входной информацией. Таким образом, теперь в слое 2 у нас активны все колонки, являющиеся квинтами, и в слое 4 у нас идет частичное возбуждение во всех колонках, представляющих интервалы, начинающиеся на Ре. Пересечение этих двух множеств дает нам ответ, колонку, представляющую интервал Ре-Ля (см. рисунок 11).

Перейти на страницу:

Похожие книги

Киберкрепость: всестороннее руководство по компьютерной безопасности
Киберкрепость: всестороннее руководство по компьютерной безопасности

Как обеспечить надежную защиту в эпоху, когда кибератаки становятся все более продвинутыми? Каковы последствия уязвимости цифровых систем? Петр Левашов, экс-хакер с богатым бэкграундом, рассматривает все грани кибербезопасности, начиная с базовых принципов и заканчивая новейшими технологиями.Читатели познакомятся с:• основами компьютерной безопасности и актуальными методами защиты;• современными методами шифрования данных и криптографии;• процедурами ответа на инциденты и восстановления после катастроф;• юридическими и регуляторными требованиями к компьютерной безопасности.Автор использует свой уникальный опыт, чтобы предоставить читателям углубленное понимание кибербезопасности. Его подход охватывает теоретические знания и практическую подготовку, делая этот материал доступным для профессионалов и новичков.

Пётр Юрьевич Левашов

Зарубежная компьютерная, околокомпьютерная литература
Самоучитель UML
Самоучитель UML

Самоучитель UMLПервое издание.В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы. Цель книги – помочь программистам освоить новую методологию разработки корпоративных программных приложений для последующего применения полученных знаний с использованием соответствующих CASE-инструментов.

Александр Васильевич Леоненков , Александр Леоненков

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Прочая компьютерная литература / Книги по IT
Оптимизация BIOS. Полный справочник по всем параметрам BIOS и их настройкам
Оптимизация BIOS. Полный справочник по всем параметрам BIOS и их настройкам

Прочтя эту книгу, вы узнаете, что представляет собой BIOS, какие типы BIOS существуют, как получить доступ к BIOS и обновлять ее. Кроме того, в издании рассказано о неполадках в работе BIOS, которые приводят, например, к тому, что ваш компьютер не загружается, или к возникновению ошибок в BIOS. Что делать в этот случае? Как устранить проблему? В книге рассказывается об этом и даже приводится описание загрузки BIOS во флэш-память.Также вы научитесь использовать различные функции BIOS, узнаете, как оптимизировать их с целью улучшения производительности и надежности системы. Вы поймете, почему рекомендуемые установки являются оптимальными.После прочтения книги вы сможете оптимизировать BIOS не хуже профессионала!Книга предназначена для всех пользователей компьютера – как начинающих, которые хотят научиться правильно и грамотно настроить свою машину, используя возможности BIOS, так и профессионалов, для которых книга окажется полезным справочником по всему многообразию настроек BIOS. Перевод: А. Осипов

Адриан Вонг

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Книги по IT