Читаем Обработка больших данных полностью

Благодаря этим встроенным механизмам отказоустойчивости, MapReduce гарантирует завершение обработки данных, даже если отдельные узлы кластера выходят из строя. Автоматическое обнаружение сбоев, перезапуск задач на других узлах, репликация данных и мониторинг выполнения задач создают высоконадежную и устойчивую к сбоям систему. Эти особенности делают MapReduce идеальным инструментом для работы с большими данными в распределенной среде, где отказоустойчивость является ключевым требованием.

5. Архитектура «мастер-слейв»:

MapReduce, как и многие распределенные системы, использует архитектуру "мастер-слейв" для управления распределением и выполнением задач в кластере. Эта архитектура включает в себя центральный управляющий узел, называемый JobTracker (в ранних версиях Hadoop), и множество подчиненных узлов, называемых TaskTracker. В современной реализации Hadoop JobTracker заменен на ResourceManager и ApplicationMaster в рамках системы управления ресурсами YARN (Yet Another Resource Negotiator), но концепция остается аналогичной.

JobTracker является центральным элементом в архитектуре MapReduce. Он выполняет несколько ключевых функций:

1. Распределение задач: Когда пользователь отправляет MapReduce-задание, JobTracker отвечает за разделение его на множество более мелких задач Map и Reduce. Эти задачи затем распределяются между доступными узлами-слейвами (TaskTracker), чтобы оптимально использовать ресурсы кластера.

2. Координация выполнения: JobTracker следит за выполнением всех задач, входящих в задание. Он отслеживает статус каждой задачи, получая регулярные отчеты от TaskTracker'ов. Если какая-то из задач не удается выполнить, например, из-за сбоя узла, JobTracker автоматически переназначает задачу другому TaskTracker'у, обеспечивая завершение работы.

3. Управление ресурсами: JobTracker управляет распределением ресурсов кластера, чтобы убедиться, что задачи выполняются эффективно и без конфликтов. Он учитывает загрузку узлов, их доступность и другие параметры, чтобы максимально увеличить производительность кластера.

4. Отчетность и мониторинг: JobTracker ведет учет выполнения заданий, предоставляя информацию о статусе задач, времени выполнения и любых проблемах, которые возникают в процессе. Эти данные могут использоваться для анализа производительности и дальнейшей оптимизации работы системы.

TaskTracker – это узел-слейв, который выполняет задачи, назначенные ему JobTracker'ом. В каждом узле кластера работает свой TaskTracker, и он выполняет следующие функции:

1. Выполнение задач: TaskTracker получает от JobTracker задачи Map или Reduce и выполняет их на своем узле. Каждая задача обрабатывается отдельно, и TaskTracker может параллельно выполнять несколько задач, если у узла достаточно ресурсов.

2. Отчет о состоянии: TaskTracker регулярно отправляет отчеты о состоянии выполнения задач обратно JobTracker'у. Эти отчеты включают информацию о прогрессе выполнения задач, использовании ресурсов и любых возникших ошибках. Это позволяет JobTracker оперативно реагировать на любые проблемы и переназначать задачи, если это необходимо.

3. Локальная обработка данных: TaskTracker пытается выполнить задачи Map на данных, которые физически находятся на том же узле или поблизости, что минимизирует сетевой трафик и увеличивает эффективность обработки данных. Это достигается за счет интеграции с HDFS, где данные распределяются между узлами кластера.

Архитектура "мастер-слейв" в MapReduce также включает механизмы обработки сбоев, которые особенно важны для больших кластеров:

1. Перезапуск задач: Если TaskTracker не может завершить задачу из-за сбоя узла, JobTracker переназначает эту задачу другому TaskTracker'у. Это гарантирует, что задание будет выполнено, даже если часть узлов кластера выходит из строя.

2. Замена TaskTracker: В случае сбоя целого узла, включая его TaskTracker, JobTracker обнаруживает, что TaskTracker перестал отправлять отчеты о состоянии, и перестраивает распределение задач таким образом, чтобы другие узлы взяли на себя выполнение оставшихся задач.

3. Функция «сброс задач»: Если задача слишком долго остается в состоянии выполнения или возникает подозрение на сбой, JobTracker может принять решение о "сбросе" задачи и назначении ее новому TaskTracker'у для выполнения. Это предотвращает зависание задания и ускоряет его завершение.

Архитектура "мастер-слейв" в MapReduce с использованием JobTracker и TaskTracker обеспечивает централизованное управление заданиями и эффективное распределение задач по узлам кластера. JobTracker координирует все аспекты выполнения задания, включая распределение задач, мониторинг выполнения и управление сбоями. TaskTracker, в свою очередь, выполняет задачи и регулярно отчитывается о своем состоянии. Этот подход обеспечивает высокую производительность, устойчивость к сбоям и эффективное использование ресурсов кластера, что делает MapReduce мощной и надежной системой для обработки больших данных.

Перейти на страницу:

Похожие книги

Как справиться с компьютерной зависимостью
Как справиться с компьютерной зависимостью

Компьютер так прочно вошел в нашу жизнь, что большая половина человечества не может представить без него своего существования. Мы проводим за ним не только все рабочее, но и свободное время. Однако не каждый человек знает, что круглосуточное пребывание за монитором несет реальную угрозу как физическому (заболевания позвоночника, сердечно-сосудистой системы и т. д.), так и психическому здоровью (формирование психической зависимости от Интернета и компьютерных игр). С помощью данной книги вы сможете выявить у себя и своих близких признаки компьютерной зависимости, понять причины и механизмы ее возникновения и справиться с ней посредством новейших психологических методик и упражнений.

Виктория Сергеевна Тундалева , Елена Вячеславовна Быковская , М О Носатова , Н Р Казарян , Светлана Викторовна Краснова

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Все под контролем: Кто и как следит за тобой
Все под контролем: Кто и как следит за тобой

К каким результатам может привести использование достижений в сфере высоких технологий по отношению к нашей частной жизни в самом ближайшем будущем? Как мы можем защитить свою частную жизнь и независимость в условиях неконтролируемого использования новейших достижений в этой сфере? Эта проблема тем более актуальна, что даже США, самая свободная демократия мира, рискует на наших глазах превратиться в государство всеобщего учета и тотального контроля.Книга талантливого публициста и известного специалиста по компьютерным технологиям Симеона Гарфинкеля – это анализ тех путей, по которым может осуществляться вторжение в частную жизнь, и способов, с помощью которых мы можем ему противостоять.

Симеон Гарфинкель

Публицистика / Прочая компьютерная литература / Документальное / Книги по IT
Компьютер в помощь астрологу
Компьютер в помощь астрологу

Книга поможет овладеть основами астрологии и научит пользоваться современными программами для астрологических расчетов. На понятном обычному человеку уровне дано объяснение принципов и идеологии астрологии «докомпьютерных» времен. Описана техника работы с программами, автоматизирующими сложные астрологические расчеты. Рассмотрены основные инструменты практикующего астролога: программы семейства Uranus для новичков, ZET 8 и Stalker — для специалистов, Almagest — для экспертов. Для всех этих программ дано развернутое описание интерфейса и приведены инструкции расчета гороскопов различного типа. Изложены методы интерпретации гороскопов с помощью компьютера. Все астрологические расчеты приведены в виде подробных пошаговых процедур, которые позволят даже начинающему получать астрологические результаты профессионального уровня. Прилагаемый компакт-диск содержит видеокурс по работе с популярными астропроцессорами.Для широкого круга пользователей.

А. Г. Жадаев , Александр Геннадьевич Жадаев

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT