Убеждение в возможности именно такой расшифровки корония поддерживалось успехом аналогичного случая со спектром разреженных масс газа, образующих туманности, расположенные в межзвездном пространстве. Обнаруженный в них элемент, названный «небулием» (от латинского слова «небула» - туманность) и скрывавшийся под зелеными линиями спектра, был «допрошен с пристрастием» физиком Боуэном в США. После долгого «запирательства» в 1927 г. он «сознался», что он... попросту кислород. Впрочем - не попросту, а кислород, дважды ионизованный, т. е. потерявший два электрона. Но и в этом виде мы бы его разоблачили раньше, если бы он не умудрялся испускать те линии спектра, которые ему «запрещено» испускать.
По сути дела, никто ему, собственно говоря, эти линии не запрещал испускать, но излучение их в земных условиях для него так трудно, что практически обнаружить их в спектре кислорода на Земле невозможно, и потому физики условно назвали эти линии «запрещенными». Линии возникают, когда электрон перескакивает сам по себе, ничем «не принужденный», с одной орбиты на другую. Но вот на той орбите, с которой он должен перескочить, покрутившись на ней некоторое положенное ему время, электрон крутится очень долго - секунды, часы, дни и даже месяцы, прежде чем электрон сам по себе ее покинет и излучит соответствующего «запрещенную» линию.
В земных условиях плотности газа так велики и столкновения атомов поэтому так часты, что с подобной орбиты электрон при ударе сталкивают насильно на другую орбиту раньше, чем он успеет с нее уйти «по своей воле». На обычных же орбитах электрон остается всего лишь около 10~8 сек. Это и не дает возможности атому излучить запрещенную линию.
В газовых туманностях плотность газа так ничтожно мала, что столкновения атомов происходят крайне редко, и излучение ими линий, «запрещенных» в земных условиях, тут происходит беспрепятственно.
По примеру с небулием, линии корония стали искать среди запрещенных линий известных элементов. Их длину волны можно установить только теоретически, зная структуру атомов, но она пока еще не для всех них известна. В газах, выброшенных в пространство звездой RS Змеедержца, были необычайно сильны запрещенные линии атомов железа, ионизованных не слишком сильно. Можно было поэтому поставить линии корония в спектре этой звезды в связь с необычными для звезд условиями свечения паров железа. Многие попытки, сделанные в этом направлении, были безрезультатны, но в 1941 г. шведский ученый Эдлен сообщил давно желанную весть - «короний оказался железом»...
Одни линии корония оказались запрещенными линиями девятикратно ионизованного железа, другие - такими же линиями тринадцатикратно (!) ионизованного железа, а менее яркие линии - принадлежащими многократно ионизованному никелю и другим элементам.
Плотность газа в короне, несомненно, очень мала и могла бы допустить излучение запрещенных линий. А железо в солнечной короне могло бы получаться за счет испарения железной метеоритной пыли, когда она достаточно приближается к Солнцу и нагревается.
В первый момент к отождествлению корония астрономы отнеслись недоверчиво. Как может быть, чтобы вблизи Солнца, которое само имеет температуру «всего лишь» в 6000°, могли существовать столь сильно ионизованные атомы железа. Для такой ионизации в обычных условиях нужна температура выше 100 000°, и потому никто раньше не искал короний среди ионов, существование которых требует таких высоких температур. В последнее время стало, однако, намечаться объяснение существованию вблизи Солнца паров железа, атомы которого лишились 9 и даже 13 электронов. Это может произойти не только от высокой температуры, но и от влияния некоторых других процессов, возникающих в разных местах хромосферы. Описание их здесь было бы слишком сложно, но укажем, что московский астроном И. С. Шкловский представляет обстоятельства дела следующим образом. В условиях короны достаточно наличия слабого электрического поля в ней, чтобы возникло движение электронов наружу со скоростью, соответствующей температуре в 1 000 000°.
Эти электроны, возникающие в самой короне, с бешеными скоростями налетая на находящиеся в ней же атомы железа и никеля, ионизуют их так сильно, как при других условиях это осуществлялось бы при температуре в миллион градусов.
Как показали В. А. Крат и С. Б. Пикельнер, поверхность Солнца, выбрасывая свои электроны в мировое пространство, получает положительный заряд благодаря накапливанию положительно заряженных ионов. Но это ведет тогда к взаимному отталкиванию ионов и к выбросу их из Солнца, заряд которого, уменьшаясь, позволяет электронам выбрасываться снова. Так Солнце постепенно теряет свою массу.
Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский
Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука