В 1834 г., изучая собственное движение Сириуса, Бессель в Германии обнаружил, что он движется не по прямой (точнее, не по дуге большого круга), а описывает какую-то волнистую линию. Лишь через десять лет он заключил: волнистый путь Сириуса вызван наличием у него невидимого спутника с периодом обращения в полустолетие. Центр тяжести системы движется в пространстве прямолинейно, как любая одиночная звезда, но оба тела описывают около него свои орбиты, так что сочетание орбитального движения с поступательным и делает видимый путь Сириуса подобным волнистой линии. Сириус и его невидимый спутник находятся всегда по разные стороны от их центра тяжести.
Рис. 148. Извилистый путь Сириуса по небу и орбита его спутника. Центр тяжести системы движется прямолинейно
Предсказание блестяще подтвердилось только 31 января 1862 г. В этот вечер американский оптик Альван Кларк испытывал новый, построенный им 45-сантиметровый рефрактор. Это был наибольший тогда телескоп, обладавший прекрасными оптическими качествами. Наведя его на Сириус, он увидел возле него слабо светящегося спутника, как раз в том месте, которое для него указывала теория. Последующие наблюдения показали, что и период обращения спутника также совпал с периодом, предсказанным теорией. Таким образом, невидимое небесное тело, в существовании которого были убеждены и местоположение которого на каждый день знали, стало, наконец, видимым...
Спутник Сириуса не такой уже слабый, - он 7-й видимой звездной величины, но соседство ослепительной «песьей звезды» мешало его заметить раньше и затрудняло его изучение в дальнейшем. Поэтому только в 1916 г. удалось сфотографировать спектр спутника и убедиться, что он похож на спектр своего яркого соседа. Предположение, что спутник светит отраженным светом, приводило к выводу о нелепо больших его размерах, а позднее выявилось и различие в спектрах этих двух звезд, что окончательно заставило признать спутник самосветящимся. И вот тогда-то с неизбежностью последовал вывод о чудовищно высокой его плотности, перед чем астрономы останавливались в недоумении. В 1920-1924 гг. английский физик Резерфорд постиг строение атомов, как сложных систем, состоящих из ядер и электронов, а индийский физик Саха создал теорию ионизации под действием высокой температуры, и то, что казалось совершенно необычайным, стало естественным.
К этому времени А. Эйнштейн разработал теорию относительности. Благодаря своей необычности новая теория была встречена сначала с недоверием. Эйнштейн же из своей теории сделал некоторые выводы, которые нельзя было проверить опытами в лабораториях и которые требовали проверки опытом буквально «в мировом масштабе» и требовали услуг астрономов.
В качестве подопытного кролика, или, если хотите, белой мыши, была взята белая крошка - спутник Сириуса. При малом объеме он имеет массу почти как у Солнца и представляет собой как раз то, что нужно для упомянутого опыта. Вследствие малости размеров Сириуса В сила тяжести на поверхности этой звезды в тысячу раз больше, чем на Солнце, и почти в 30 000 раз больше, чем на Земле. Маятник, делающий на Земле за секунду одно колебание, сделал бы их там около 140. «Сутки», т. е. 1440 минут по часам с таким маятником, мы бы прожили на белом карлике за 10 земных минут. По теории относительности в таких условиях световые колебания (вызванные колебаниями в атомах) должны происходить заметно ленивее (медленнее), чем у нас. Длина волны их должна быть больше, чем в нашей лаборатории, линии спектра спутника Сириуса, возникающие у его поверхности, должны быть сдвинуты к красному концу спектра. Величина этого сдвига по вычислениям должна быть такая же, как если бы спутник Сириуса удалялся от нас со скоростью 20 км в секунду.
Но как проверить, что такой сдвиг именно по этой причине действительно есть? Ведь звезда в самом деле может удаляться от нас с такой скоростью, а мы соответствующий сдвиг линий примем за «красное смещение» теории относительности.
Спутник Сириуса, к счастью, как раз позволяет отличить друг от друга такие сдвиги. В самом деле, скорость по отношению к нам вследствие движения спутника по орбите может быть точно вычислена для любого момента. Движение центра тяжести системы Сириуса тоже хорошо известно из наблюдений спектра самого Сириуса. Он приближается к Солнцу на 8 км за каждую секунду. Если после учета обоих движений в спектре спутника все же останется сдвиг линий, то подлинное движение его будет тут уже не при чем. Получить для этой цели хорошую фотографию спектра спутника, находящегося в близком соседстве со звездой, в 10 000 раз более яркой, было трудным делом и требовало от наблюдателя не меньшей ловкости, чем для акробата хождение по канату. Оказалось, что в спектре спутника Сириуса действительно обнаруживается сдвиг линий и как раз такой, какой требуется теорией относительности. Теория, предсказавшая существование сдвига, была тем самым подтверждена и получила права гражданства...
К каким еще новым научным открытиям приведет дальнейшее изучение звезды Изиды и ее диковинного спутника?
Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский
Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука