Определив электронную температуру или приняв ее за 8000°, по мере эмиссии находят nе, подставляя принятое значение l. Можно обнаружить свечение с мерой эмиссии, равной всего лишь нескольким десяткам. Плотности диффузных туманностей обычно оказываются в пределах от десятка до сотни электронов (протонов) на 1 см3, а в центре туманности Ориона плотность доходит до 1000 и больше, но в общем плотности их ниже, чем в планетарных туманностях. В водородных полях плотность падает до nе=1.
Умножая массу протона на пе и на объем туманности (иногда условный), получаем массу последней. Первые такие определения были сделаны в лаборатории автора О. Д. Докучаевой для туманности Ориона и Д. П. Гук для туманности Омега. Получились массы 166 и 515 масс Солнца соответственно. Позднее Г. А. Шайн, В. Ф. Газе и другие нашли, что массы отдельных туманностей колеблются от 0,1 до сотен масс Солнца, а массы комплексов составляют тысячи масс Солнца. Наименьшие диффузные туманности близки по массе к планетарным. Что касается размеров, то они у диффузных туманностей колеблются от долей парсека до десятков парсек.
В газовых туманностях иногда наблюдается и непрерывный спектр той или иной интенсивности. Иногда он, несомненно, принадлежит пыли, особенно когда на фоне туманности видны темные прожилки, как в Трехраздельной туманности. В туманности Ориона много пыли; это видно из того, что погруженные в нее горячие звезды, как говорят, сильно покраснены. При такой плотности пыли на протяжении парсека она производила бы поглощение в 10 звездных величин!
В одних туманностях пыли больше, в других меньше, иногда одна часть туманности пылевая, другая газовая. Отсутствие следов газового спектра во многих пылевых туманностях не означает еще, что в них газа нет. Освещающие их звезды В1 и более поздних классов не могут вызвать нужную ионизацию и свечение газа, но все же его в пылевых туманностях мало, так как согласно расчетам даже при плотности ne=10-15 звезды В2-ВЗ вызвали бы заметное свечение газа. Но неясно обратное: почему нет чисто отражательных туманностей, освещенных звездами классов О и В0?
Во многих газовых туманностях, как показали наблюдения и расчеты Г. А. Шайна и С. Б. Пикельнера, непрерывный спектр обусловлен не пылью, а двухквантовыми переходами, как в планетарных туманностях, тогда как раньше этот спектр приписывали пыли. В ярких газовых туманностях, может быть, и есть пыль, но она светится отраженным светом так слабо, что ее непрерывный спектр не заметен на фоне яркого спектра, вызванного двухквантовыми переходами в газе.
Большие массы диффузных туманностей посылают весьма заметное тепловое радиоизлучение.
Много исследований посвящается сейчас газодинамическому исследованию судьбы диффузных туманностей. Тяготение может, конечно, удерживать от рассеяния большую массу холодного газа. Но в Галактике все находится в движении.
Недостаточное знание распределения плотностей и других условий в реальных туманностях, их разнообразие, различия в постановке и решении теоретической задачи не привели пока к однозначным выводам о том, рассеиваются ли диффузные туманности, либо в них происходит конденсация. Наблюдения также пока еще не могут ответить на этот вопрос. Согласно некоторым работам холодный газ может конденсироваться в звезды и в пылинки, если имеются ядра конденсации в виде сложных тяжелых молекул или иные. Горячий, ионизованный газ конденсироваться никак не может.
Зародыши пылинок, сталкиваясь друг с другом и с атомами холодного газа, могут в одних случаях сливаться и расти, в других случаях испаряться. Это влияет и на плотность окружающего газа. Получается очень сложная картина, в которой большое внимание привлекают вторжения темной материи в светлые области ионизованного газа. При этом свечение по периферии темной массы усилено, образуя светлый, резкий ободок вдоль ее края, всегда обращенного к звезде. Особенно узкие клинья темных вторжений получили за свой вид название «слоновые хоботы».
Плотность ионизованного газа в светлом ободке сильно повышена, а темная область содержит холодный газ, перемешанный с уплотненной пылью. Теоретическая трактовка описанного явления опирается на то, что когда горячая звезда облучает холодный газ, то ионизация в нем распространяется быстрее, чем волна давления нагреваемого газа. Светлый ободок получается, когда ионизационный фронт подходит к плотному облаку газа со стороны горячей звезды. Если на пути фронта встречается область очень большой плотности, она остается неионизованной, и фронт огибает эту флуктуацию. Это и приводит к включениям областей Н I в области Н II в виде «слоновых хоботов». Сжимание холодного газа в области «слонового хобота» давлением газа зоны Н II может привести к полной изоляции газового сгустка и дать начало возникновению глобулы. Сжатие глобул горячим газом и образование в них так называемой кумулятивной сходящейся ударной волны облегчают их гравитационную конденсацию.