Можно считать, что в пределах точности расчетов нет существенного различия между количественным химическим составом туманностей и звезд. Было бы особенно интересно сравнить химический состав ядер туманностей и их оболочек, так как, несомненно, вещество оболочки (если учитывать факт ее расширения) отделилось когда-то и как-то от звезды. Это тем более интересно, что среди ядер со спектром типа Вольфа — Райе одни содержат углерод без азота, другие же содержат и углерод и азот, а в одном случае азот даже сильно преобладает. К сожалению, такое сравнение химического состава нелегко, в частности потому, что линии спектра туманности накладываются на линии спектра ядра, и без того малочисленные, и отделить их друг от друга трудно. Известно, что в солнечных протуберанцах аномально высоко содержание ионизованного кальция по сравнению с его содержанием в хромосфере, из которой они выбрасываются. Протуберанцы бывают водородные и металлические. Такого рода различие возможно и в планетарных туманностях.
Спектр излучения газовых туманностей и то, что их яркость больше, чем яркость соседних звезд, которые можно было бы заподозрить как причину их свечения, отвергает возможность их свечения отраженным светом. Однако доказываемая спектром разреженность газа не допускает, чтобы он был раскаленным и вполне самосветящимся. Американцы Хаббл, Боуэн и Мензел, голландец Занстра и советский ученый В. А. Амбарцумян установили основные черты свечения и природы газовых туманностей.
Газовые туманности светятся до некоторой степени подобно тому, как светятся кометы или как газ в газосветной трубке. Их свечение вынужденное.
Вынуждают их к этому звезды: в планетарных туманностях — находящаяся в их центре, а в диффузных — находящаяся где-либо в них, либо даже
по соседству. Но такая звезда должна быть непременно очень горячей. Так оно и есть, — звезды, возбуждающие свечение газовых туманностей, имеют спектральный класс О или В0, - никак не более поздний, т. е. их температура 25–30 тысяч градусов. При таких высоких температурах в спектре этих звезд максимум энергии лежит в невидимой глазу ультрафиолетовой области. Туманность поглощает невидимые глазом мощные потоки ультрафиолетовых лучей, и затем ее атомы излучают поглощенную энергию в области видимых глазом лучей, например излучают зеленые линии. Минимальная порция света или квант видимых лучей содержит меньше энергии, чем квант ультрафиолетовых лучей. Поэтому в силу закона сохранения энергии, чтобы излучить то же количество энергии, какое было поглощено, туманность должна излучить большее число квантов, чем ею получено. Впечатление яркости, воспринимаемое глазом, зависит от числа квантов, падающих на него в секунду. Вот почему газовые туманности в видимых лучах светятся ярче, чем звезды, вызывающие это свечение. Энергия же излученных туманностью видимых лучей равна энергии поглощенных ею ультрафиолетовых.
Под действием высокой температуры звезды газы туманности ионизуются очень сильно, например, там наблюдается четырежды ионизованный кислород. Водород светится, когда его ионы захватывают пролетающие мимо свободные электроны. Запрещенные же линии кислорода излучаются после того, как атомы или ионы кислорода возбудятся за счет энергии столкновения с медленно летящими свободными электронами. Чтобы испустить зеленую линию «небулия», ион кислорода должен быть в возбужденном состоянии сколько ему полагается, а именно не менее нескольких минут. За этот период, следовательно, его не должны потревожить толчком ни кванты света, ни другие атомы, ни электроны. Чтобы столкновения были так редки, число частиц в единице объема (т. е. плотность газа) должно быть очень малым. Вычисления показывают, что плотность газовых туманностей составляет 10-19-10-22 г/см3. При этой плотности от одного столкновения атома до другого проходят часы. Вследствие удаленности от звезды кванты ее света тоже летят далеко друг от друга и редко сталкиваются с ионами. Таким образом, у атомов есть все условия, нужные для излучения ими запрещенных линий, т. е. запрещенных в земных условиях, при большой плотности газов. В земных условиях атомы толкаются гораздо чаще, чем люди на толкучке, а в туманности по сравнению с этим они сталкиваются реже, чем бродячие музыканты встречались друг с другом. В воздухе молекулы от столкновения до столкновения проходят путь длиной в миллионные доли сантиметра, а в туманности длина, как говорят, такого «свободного пробега» измеряется миллионами километров.
Как мы говорили, масса колоссального объема газа, образующего планетарную туманность благодаря ее разреженности, составляет всего лишь одну сотую массы Солнца. Массы больших диффузных туманностей могут быть в сотни раз больше этого. О. Д. Докучаева, пользуясь теорией В. А. Амбарцумяна, оценила, например), массу туманности Ориона в 500 масс Солнца.