Читаем Очевидное? Нет, еще неизведанное… полностью

Если же мы хотим иметь строгое определение длины, пригодное для физиков, необходимо учитывать реальные свойства масштабного отрезка, а значит, сформулировать какие-то добавочные постулаты, описывающие эти свойства.

После только что сказанного может сложиться впечатление, что попытка четко определить длину и процесс ее измерения в достаточной степени безнадежна.

Впрочем, в науке, как и в жизни, можно примириться с любыми тяготами избранного пути, если знать, к чему мы стремимся, видеть перспективу. А пока вообще не очевидно, следует ли физикам заниматься такими вопросами, как скрупулезный анализ понятий длины времени и т. п. Или же решение подобных проблем, говоря грубо, досужая, никому не нужная болтовня?

«Может быть, оставим, господа, все эти вопросы математикам? Им и карты в руки. Пусть они дают строгие определения. А мы и без определений знаем, что такое длина. Это, изволите видеть, понятно каждому. И длину движущегося поезда без всяких рецептов и прикладывания масштабов прекрасно измерим. Отметим, знаете ли, просто точку на полотне и одновременно точку, против которой начало паровоза имелось. И все. Потом можете прикладывать к поезду ваш масштаб — сойдется. И вообще, господа, сводить все к прикладыванию масштаба, извините, глупость! Извольте вашим способом измерить расстояние между вершинами двух гор. Не выйдет-с! Без триангуляции не обойдетесь. А в триангуляции, изволите видеть, измерение углов присутствует, в определение ваше не входящее.

Некие сомнения. Попутно автор проявляет юмор.

Жили мы, милостивые государи, без этих определений, слава те господи, почитай с Ньютона, и ничего, неплохо жили-с. Измеряем и расстояние до звезд и длину микроорганизмов. И все без прикладывания.

Конечно, не отрицаю, нечто разумное в определении сем присутствует. К примеру-с, масштабный отрезок. Эталон длины иметь нужно, согласны? Но об эталоне длины, позвольте сказать, мы не менее вашего наслышаны. Без малого сто лет за семью замками храним. В подвалах-с.

А в целом все это не то. Натуру изучайте. Феномены-с. А основ механики не касайтесь. Здесь не вам чета люди трудились. Ньютон-с, к вашему сведению!»

Можно представить, что примерно такую отповедь пришлось бы нам выслушать от какого-либо ординарного профессора физики середины XIX века.

И с горечью приходится признать, что пока нечего возразить. Опыт, весь опыт классической физики свидетельствует против нас. Действительно, ведь обходились раньше без определений.

Тем не менее в данном случае физики основательно просчитались. Лишь Эйнштейн показал, что до теории относительности они, по существу, не знали, с какими представлениями о природе мира, о природе времени и пространства связана их наука.

Сейчас всем ясно, что такие понятия, как время или длина, нуждаются в совершенно четком определении, что в физике нет и не может быть места для самоочевидных утверждений.

Однако необходим был Эйнштейн, чтобы эти замечания, столь убедительные, когда их высказывают в общей форме, на деле стали достоянием ученых.

Физик XIX столетия не интересовался основами основ своей науки в первую очередь потому, что был убежден в невозможности появления каких-либо принципиально новых теорий.

Можно повторить, что в аналогичном случае математики оказались принципиальнее. Примерно два тысячелетия геометры мучились над доказательством пятого постулата Эвклида (постулата параллельности), руководствуясь при этом, пожалуй, только чисто эстетическими соображениями. Постулат о параллельных прямых выделялся среди остальных аксиом геометрии своей сравнительной неочевидностью и обособленностью. Именно это очень не нравилось математикам. Никакой другой причины для объяснения настойчивых попыток доказать пятый постулат не видно.

И авторы неэвклидовой геометрии (Лобачевский, Бояи, Гаусс) пришли к своим представлениям не потому, что геометрия Эвклида не соблюдалась на практике, а на основе чисто умозрительных построений.

Но если математики могли чисто логически прийти к идее, что возможны различные системы аксиом, что пространство может описываться различными геометриями, то физикам такой путь не был доступен. Во-первых, основы физики (ее аксиомы) тогда, по существу, не были разработаны. А во-вторых, сам характер исследовательской работы воспитывал предубеждение против скрупулезных логических, излишне абстрактных рассуждений. И только гений Эйнштейна помог физикам синтезировать оба метода.

Поэтому, зная, что детальный анализ основных положений классической физики необходим для понимания теории относительности, мы можем спокойно продолжать.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное