Читаем Очевидное? Нет, еще неизведанное… полностью

Существует эффектный апокриф, что будто даже аналитическая формулировка закона тяготения была ясна Ньютону в 1866 году. Но попытка объяснить при помощи закона тяготения движение Луны оказалась неудачной, так как Ньютон имел ошибочные экспериментальные данные о размерах Земли, и в результате значение ускорения на поверхности Земли, которое получилось из вычисления лунного движения, отличалось от того, которое находилось опытным путем. Лишь в 1682 году ему стали известны новые данные о длине меридиана.

С. И. Вавилов, правда, серьезно возражает против истинности этой истории.

Ньютон так взволновался, что не мог сам провести новые очень простые вычисления, и это проделал за него некий, оставшийся неведомым миру, его друг. Так был окончательно создан закон тяготения.

Возможно, этот рассказ не более чем легенда, но, во всяком случае, такая легенда очень характерна, когда речь идет о Ньютоне.

Прав был Ньютон в споре с Гуком или нет, в конечном счете неважно, но, безусловно, никто, кроме Ньютона, не владел математикой и физикой настолько, чтобы вывести эмпирически установленные законы движения планет из единого закона притяжения тел. Никто не мог поэтому разрешить и обратную задачу — четко сформулировать сам закон взаимодействия, имея эмпирические законы Кеплера. Эта задача полностью решена в «Началах».

Закон тяготения в руках Ньютона дал ответ на все главные вопросы, связанные с движением небесных тел.

Но этого мало. Вычисленная при помощи того же закона тяготения сила тяжести точно совпала с опытом. Казалось бы, трудно требовать более убедительные доказательства. И тем не менее прошло еще почти столетие, прежде чем теория тяготения была окончательно признана во всем научном мире.

Для современников Ньютона теория тяготения казалась, пожалуй, значительно революционней и удивительней, чем в наши дни теория относительности. Это связано отчасти с тем, что уровень научной культуры в XVII и XVIII столетиях был значительно ниже, чем в наши дни. Не следует, конечно, думать, что было меньше талантливых ученых. Отнюдь нет. Просто средневековое мировоззрение в той или иной степени еще довлело над самыми яркими умами того века. Даже сам Ньютон усердно и прилежно толковал священное писание. Чего же можно требовать от других?

Любопытный исторический факт.

Если вспомнить, что его современники все еще проникнуты традициями физики гипотез, можно представить себе их реакцию, когда вместо объяснения существа самого что ни на есть основного и сокровенного свойства тел им предлагают (смешно слышать!) аналитический закон взаимодействия. Для ученых того времени это звучит почти как издевательство.

Не удивительно поэтому, что даже такие люди, как Лейбниц, Гюйгенс, Эйлер, Ломоносов, не принимали идей тяготения. Вот, например, отрывок из переписки Лейбница и Гюйгенса.

Лейбниц: «Я не понимаю, как Ньютон представляет себе тяжесть или притяжение. По его мнению, это, по-видимому, не что иное, как некое необъяснимое нематериальное качество».

Гюйгенс: «Что касается причины приливов, которую дает Ньютон, то она меня не удовлетворяет, как и все другие его теории, которые он строит на принципе притяжения, который кажется мне нелепым».

Особенно сильна оппозиция Ньютону во Франции, где все покорены учением Рене Декарта.

Не наша задача оценивать роль, которую сыграли в науке взгляды замечательного французского философа. И вообще-то можно было бы не останавливаться на том, как он пытался объяснить наблюдаемые движения небесных тел. Но теория материи Декарта интересна для нас одним пунктом.

В ней впервые появляется загадочная субстанция материи — эфир. Эфир, приковывавший к себе внимание физиков вплоть до XX столетия!

Первое, но далеко не последнее упоминание об эфире.

По Декарту, эфир находится в непрерывном вихревом движении и увлекает за собой все планеты. В процессе этого же вихревого движения части материи, которые были вначале в состоянии хаоса, разделились на три сорта частиц[29].

Первый — самый грубый. Из частиц этого типа созданы Земля, планеты и кометы.

Второй включает более отшлифованные частицы. Из них образовались Солнце и звезды.

И наконец, третий сорт — бесконечно тонкие частицы.

Взаимодействие небесных тел, по Декарту, осуществляется благодаря их давлению на эфир. Давление передается по эфиру от одного тела к другому. Ввиду этого небесные тела влияют друг на друга.



Особо отметим: по Декарту, для передачи действия (силы) на расстояние необходима материальная, обладающая вполне определенными механическими свойствами среда — эфир.

Декарт и его последователи пытались представить себе тяготение на основе конкретной модели, желали свести все к воздействию тел на эфир и обратному действию эфира на небесные тела.

Никакого аналитического выражения Декарту, конечно, получить не удалось. Однако ученых того века в его гипотезе пленяла прелесть очевидности и наглядности.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное