Читаем Очевидное? Нет, еще неизведанное… полностью

По существу, наша работа уже почти закончена. Вся специальная теория относительности непосредственно вытекает из двух постулатов, которые мы разобрали в предыдущих главах.

Самое основное изменение, которое вносится в классическую физику, — это изменение понятия времени, или, что то же, изменение понятия одновременности. Сей вопрос также рассмотрен. Мы не касались только одного вывода совершенно принципиального характера — связи между массой и энергией. Но это потом.

Так как математическая часть теории основана целиком на преобразовании Лоренца, которое нами рассмотрено, то все остальное, в том числе сокращение длины и изменение времени, не более чем простые следствия.

Один из наиболее неожиданных выводов релятивистской теории для человека, воспитанного на механике Ньютона, — закон сложения скоростей.

Итак, перейдем к рассмотрению частностей с приятным сознанием, что основы уже ясны. Во-первых — закон сложения скоростей.

Постановка вопроса очевидна.

Пусть в инерциальной системе К со скоростью v1 движется некое тело. Пусть далее другое тело движется относительно первого со скоростью v2. Требуется определить скорость второго тела относительно системы K.

Доставив себе удовольствие строгой и общей формулировкой проблемы, вернемся к железной дороге.

Поезд идет по полотну дороги со скоростью v1 относительно полотна. (Конечно, его скорость может быть близка к скорости света.) Некто в поезде по не интересующей нас причине стреляет из ружья, и скорость пули — относительно поезда — v2. Требуется определить скорость пули относительно полотна дороги. (Конечно, и скорость пули v2 тоже может быть близка к скорости света.) Мы ограничимся только тем частным случаем, когда скорости v1 и v2 направлены по одной прямой, но все характерные черты теории относительности великолепно видны и в этом случае.

В классической механике суммарная скорость определялась предельно простым выражением vсум = v

1 ± v2 (знак + в том случае, когда стреляют по ходу поезда, и знак –, когда против хода).

По Эйнштейну, закон для определения суммарной скорости другой:

Как видно, если v1 << c и v2 << c, формула Эйнштейна переходит в классическую. (В этом случае можно спокойно пренебречь вторым членом знаменателя по сравнению с единицей.) Если же скорости v1 и v

2 сравнимы со скоростью света, тогда формула Эйнштейна становится совершенно отличной от классической.

Лучше всего в этом можно убедиться, положив одну из скоростей (например, v2) равной скорости света. Если помните, мы уже упоминали об этой задаче, обсуждая в XI главе, какова будет относительно полотна дороги скорость светового луча, посланного источником, находящимся на поезде. Легко видеть, что независимо от v1 абсолютная величина суммарной скорости снова равна скорости света.

Теперь можно разбить наши рассуждения в XI главе. Как помните, там, защищая баллистическую гипотезу, мы принимали как самоочевидный факт классическую формулу сложения скоростей.

Сейчас стоит прочесть еще раз страницу 246.

И вот, как оказывается, именно это и неправильно.

Фронт световой волны, идущей из прожектора поезда, распространяется со скоростью с относительно поезда. Но относительно наблюдателя на земле он распространяется не со скоростью (vпоезда + c), а снова с той же скоростью c

.

Для нашего воображения, воспитанного на классической механике, это удивительно. Удивительно, но тем не менее правильно.

Более того, относительная скорость двух фотонов, несущихся навстречу друг другу со скоростью света, снова равна c, а не 2c, как в классической физике[70].

В механике Эйнштейна скорость света в вакууме представляет барьер, через который невозможно перебраться.

Глава XIV,

в которой обсуждаются два вывода теории относительности, вызывающие обычно максимальное недоумение


Эйнштейн (время, длина)


Как измерять длину движущихся тел, мы уже договорились в III главе. Напомним: «Длина движущегося тела есть расстояние между одновременно отмеченными положениями его начальной и конечной точек».

В классической физике длина движущегося тела, определенная таким образом, совпадала с длиной неподвижного тела, и все было хорошо. Еще и еще раз напомним:

1. До Эйнштейна вообще никто не задумывался, «как определяется длина движущихся тел». Но, по сути дела, каждый раз, измеряя длину или говоря о ней, молчаливо подразумевали, что она определяется именно так, как сказано выше.

2. Совпадение или несовпадение длин покоящегося и движущегося тела — это вопрос опыта, и никак нельзя утверждать заранее, что они должны совпадать.

Относительность длины и лоренцово сокращение.
Перейти на страницу:

Все книги серии Эврика

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное