Читаем Огненный воздух полностью

Использование воздуха, сжатого до высокого давления имеет и другие существенные недостатки. Все детали установок глубокого холода — трубы, арматура и т. д. — должны обладать высокой прочностью. Поэтому многие из этих деталей делаются массивными. Для их изготовления приходится расходовать много высококачественных металлов.

В начале текущего столетия получили распространение турбинные механизмы, в которых возвратно-поступательное движение основных деталей заменялось вращением. Небольшие по размерам и высокопроизводительные турбокомпрессоры оказались значительно удобнее громоздких поршневых машин в тех случаях, когда требовалось сжимать газ до сравнительно небольших давлений, в 6-10 атмосфер. Многие из металлургов помнят гигантские поршневые компрессоры недавнего прошлого, применявшиеся для вдувания воздуха в доменную печь. Теперь эти сложные и уродливые механизмы повсеместно заменены небольшими турбовоздуходувками, занимающими мало места и исключительно надежными в работе.

Появление турбинных машин заставило ученых задуматься над созданием установок глубокого холода, работающих на низком давлении воздуха. Почти 50 лет назад английский физик Релей пытался использовать турбину для получения холода. Однако из этого ничего не вышло. Турбинный механизм, заменивший поршневую расширительную машину — детандер, имел крайне низкий коэффициент полезного действия. Он не давал возможности получить столько холода, сколько требовалось для экономичного сжижения воздуха.

Советский академик П. Л. Капица тщательно проанализировал неудачи Релея и других исследователей. Ему удалось установить их ошибку. Все расчеты турбинных машин производились применительно к работе с паром. В условиях паровой турбины потери энергии, зависящие от плотности пара, были настолько малы, что не принимались во внимание. Однако исследования холодильных турбин показали, что в условиях глубокого холода эти потери резко возрастают. Воздух, охлажденный до низкой температуры, становится настолько плотным, что по некоторым своим физическим свойствам скорее похож на жидкость, чем на пар. Все это привело к мысли обращаться с воздухом, охлажденным до низкой температуры, не как с газом, а как с жидкостью. Таким образом, и турбодетандер, сконструированный П. Л. Капицей, был построен по образцу водяной турбины, а не по образцу паровой.

Первая опытная проверка холодильных механизмов турбинного типа дала обнадеживающие результаты. Крохотная турбинка, построенная в 1938 году в Институте физических проблем Академии наук СССР, имела ротор диаметром всего в 8 сантиметров. Она весила несколько килограммов, но обеспечивала получение 30 литров жидкого воздуха в час. Возможность ожижения воздуха с использованием только установок низкого давления была доказана. Открылась новая область применения турбинных механизмов. Турбина получила права гражданства и в промышленности глубокого холода.

Как же работают холодильные установки, использующие воздух только низкого давления?

ХОЛОДИЛЬНАЯ УСТАНОВКА НИЗКОГО ДАВЛЕНИЯ

Схема установки глубокого холода, работающей с использованием воздуха низкого давления, изображена на рисунке 4.


Рис. 4. Схема установки глубокого холода, работающей с использованием воздуха низкого давления.


Турбокомпрессор, приводимый в действие электрическим мотором, засасывает атмосферный воздух и сжимает его до давления в 5–6 атмосфер. Поток сжатого воздуха направляется в теплообменник, в котором он охлаждается до — 155–160 градусов за счет холодного воздуха, уходящего из установки.

Пройдя теплообменник, поток воздуха расходится по двум руслам. Основная часть сжатого воздуха поступает в расширительную турбину — турбодетандер, где воздух расширяется и совершает работу — приводит в движение динамомашину или вращает турбокомпрессор. При этом воздух еще больше охлаждается и, покидая турбодетандер при температуре в 185–187 градусов ниже нуля, направляется в конденсатор.

Второй поток холодного воздуха из теплообменника поступает прямо в конденсатор, проходя при этом между трубок, через которые движется более холодный воздух из турбодетандера. Расширяясь и охлаждаясь в междутрубном пространстве конденсатора, некоторая часть сжатого воздуха превращается в жидкость и сливается через кран в резервуар жидкого воздуха. Основное же количество воздуха, не превращенное в жидкое состояние, направляется из конденсатора в теплообменник, где отдает свой холод новым порциям сжатого воздуха, идущим из турбокомпрессора в детандер и конденсатор.

Перейти на страницу:

Все книги серии Научно-популярная библиотека («Гостехиздат»)

Похожие книги

Путь Феникса
Путь Феникса

Почему фараоны Древнего Египта считали себя богами? Что скрывается за верованиями египтян в загробную жизнь на небесах и в подземное царство мертвых? И какое отношение все это имеет к проблеме Атлантиды? Автор книги — один из самых популярных исследователей древних цивилизаций в мире — предлагает свой ключ к прочтению вечной тайны египетских пирамид, Великого Сфинкса и загадочного образа священной птицы Феникс; по его убеждению, эта тайна чрезвычайно важна для понимания грядущих судеб человечества. Недаром публикацию его книги порой сравнивают с самим фактом расшифровки египетских иероглифов два века назад.Alan F. Alford.THE PHOENIX SOLUTION. SECRETS OF A LOST CIVILISATION© 1998 by Alan F. Alford

Алан Ф. Элфорд , Алан Элфорд , Вадим Геннадьевич Проскурин

Фантастика / История / Научная литература / Боевая фантастика / Технофэнтези / Прочая научная литература / Образование и наука