По всему человеческому телу разбросаны скрытые убежища стволовых клеток, которые могут восполнить потери этих короткоживущих клеток[794]
. В наших длинных трубчатых костях, костях таза и грудины есть полости, заполненные костным мозгом. Хранящиеся в них стволовые клетки могут образовывать два вида клеток: миелоидные и лимфоидные. Миелоидные дают начало своей части родословного древа: из них развиваются эритроциты, тромбоциты, а также макрофаги – иммунные клетки, пожирающие бактерий[795]. У лимфоидных другое направление: они развиваются в T-клетки, которые могут запускать процесс самоубийства инфицированных клеток, и в B-клетки, которые синтезируют антитела, избирательно атакующие определенные патогены. Те стволовые клетки, что скрыты в стенке желудка, восстанавливают ее, когда старые клетки отшелушиваются. Подобное обновление происходит и в нашей коже.Некоторые стволовые клетки создают новые ткани только в экстренных случаях. Клетки-миосателлиты угнездились в наших мышцах, они производят новые мышечные клетки, чтобы помочь исправить повреждение[796]
. Если вы порезали руку, то из стволовых клеток, расположенных в коже и волосяных фолликулах, образуются новые клетки кожи, которые переползут к краям раны и заживят ее.Чтобы сохранять свои особые свойства, стволовые клетки должны быть защищены[797]
. Они могут находиться только в специальном химическом окружении, обеспечивающем активность определенных генетических сетей. В своем укрытии стволовая клетка раз за разом проделывает один и тот же фокус: она делится на две. Одна дочерняя клетка продолжает делиться, чтобы образовались зрелые клетки определенного типа. Другая остается стволовой. Стволовая клетка искусно руководит процессом, манипулируя тем, какие молекулы унаследуются дочерними клетками[798]. Стволовые клетки не распределяют вещества поровну. Они собирают определенные белки и РНК на одном из полюсов. Когда такая клетка делится, одна из дочерних получает всю комбинацию молекул, удерживающих ее в состоянии стволовой. Другая «дочка» переключает свою генетическую сеть в новое состояние и приобретает новые свойства.Одно из важнейших мест, где происходит образование новых клеток, было открыто совсем недавно – это мозг[799]
. Целые поколения нейробиологов пребывали в убеждении, что нейроны в головном мозге прекращают делиться вскоре после рождения человека. В процессе обучения нейроны только образуют новые связи и обрезают старые. В 1928 г. лауреат Нобелевской премии Сантьяго Рамон-и-Кахаль выразил эту догму XX в. в простой фразе: «Все может умереть, но ничто не может регенерировать»[800].Так было до конца XX в., пока эта догма не начала трещать по швам. Некоторые наиболее элегантные свидетельства нейрогенеза во взрослом мозге были получены благодаря тому, что все люди на Земле частично состоят из радиоактивных осадков.
Наземные испытания ядерного оружия продолжались с середины 1950-х гг. до 1963 г., когда был подписан Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой. Каждый взрыв выбрасывал в атмосферу нейтроны, которые иногда сталкивались с азотом, превращая его в углерод-14. К 1963 г. уровень углерода-14 в атмосфере удвоился по сравнению с исходным. Растения поглощали углекислый газ из воздуха, и углерод-14 попадал в их корни, стебли и листья. Животные, поедая растения, накапливали углерод-14 в своих тканях – все животные, в том числе и люди. Их организмы использовали атомы углерода-14 для создания многих своих молекул. Такие молекулы, как РНК или белки, рано или поздно распадаются и перерабатываются. Но ДНК остается неизменной. При этом уровень углерода-14 в атмосфере с 1963 г. снизился до значений доядерной эпохи.
В начале 2000-х гг. специалист по клеточной биологии из Каролинского института в Стокгольме Йонас Фризен пришел к выводу, что, определив содержание углерода-14 в клетках мозга, он сможет установить их возраст с точностью до пары лет. Фризен с коллегами начал исследовать тела людей, завещавших свои останки для научных целей. Ученые вырезали кусочки из разных отделов мозга и измеряли в них уровень углерода-14. Зная год рождения человека, исследователи могли определить возраст, в котором у него сформировались эти нейроны.
Первые результаты только подтвердили догму. Фризен с коллегами изучал кору головного мозга – тонкий наружный слой, который отвечает за многие высшие психические функции. И возраст нейронов в нем совпадает с возрастом человека. Но затем исследователи обратили внимание на гиппокамп – маленький участок мозга, лежащий в его глубине. Он их интересовал, поскольку уже давно было известно, что гиппокамп жизненно важен для обучения и формирования долговременной памяти.