Для объяснения такой странной наследственности некоторые ученые обратились к эпигеному, т. е. набору молекул, окружающему наши гены и контролирующему их работу. К концу XX в. стало абсолютно ясно, что эпигеном необходим для правильного развития организма из зиготы. Наши клетки сматывают свою ДНК и изменяют расположение метильных групп, когда клетка делится. Определенные комбинации включенных генов помогают клетке стать мышечной, превратиться в клетку кожи или другой части тела. Эти комбинации сохраняются довольно долго, выдерживая деление за делением. Именно поэтому из зачатков сердец вырастают сердца, а не почки.
Однако эпигеном – не просто жесткая программа переключения генов в развивающемся организме. Он чувствителен и к окружающим условиям. Например, в течение дня наш эпигеном управляет биологическим циклом нашего тела. Мы бываем сонными и бодрыми, теплыми и прохладными на ощупь, наш уровень метаболизма может повышаться или понижаться. Внутренние циклы совпадают с 24-часовым периодом вращения нашей планеты вокруг своей оси, потому что в разное время суток нам в глаза попадает разное количество света. В дневные часы работают те определенные гены, с которых клетка синтезирует белки, нужные для активной жизни. Когда приходит вечер, вокруг этих генов скапливается все больше белков, скручивающих ДНК и меняющих расположение метильных групп. Ночью эти гены остаются выключенными и беспомощными, пока их снова не разбудит армия утренних молекул[946]
.Эпигеном может изменять работу генов в ответ не только на такие регулярные сигналы, как восход и закат, но и на непредсказуемые. Когда у нас развивается инфекция, в боевой режим переходят, сталкиваясь с патогеном, иммунные клетки[947]
. Они начинают выделять смертельные вещества или посылать сигналы соседним кровеносным сосудам – пусть те запустят отек с воспалением. Чтобы эти изменения произошли, клетки реорганизуют свою ДНК, позволяя определенным генам синтезировать белки и одновременно подавляя работу других генов. А когда иммунные клетки делятся, они передают потомкам свой боевой эпигеном как своего рода клеточную память[948].Воспоминания в нашем мозге тоже могут сохраняться отчасти благодаря изменениям, которые вносятся в эпигеном[949]
. Начиная с середины XX в. нейробиологи стали замечать, что в процессе формирования памяти образуются новые связи между нейронами. Некоторые из этих связей обрезаются, другие становятся сильнее, и эти изменения могут сохраняться годами. Недавно исследователи выяснили, что создание новых воспоминаний тоже сопровождается эпигенетическими изменениями. Например, перестраиваются витки, в которые смотана нить ДНК, и присоединение метильных групп происходит по новой схеме. Эти устойчивые изменения гарантируют, что нейрон продолжит синтезировать белки, необходимые для укрепления связи, и тем самым сохранит свою долговременную память.У растений нет мозга, но есть своя память об инфекциях, опасной концентрации соли или засухе. Борьба с этими природными вызовами может помочь растениям быть готовыми к повторным неприятностям в будущем. Если пострадавшее от засухи растение сейчас наслаждается проливным дождем, оно все равно будет помнить об отсутствии воды. Даже через неделю это растение среагирует на засуху сильнее, чем то, для которого никогда не возникало подобной угрозы[950]
. Исследователи выяснили, что в основе такой длительной готовности растения к неприятностям лежит долговременное изменение его эпигенома.Однако изменения эпигенома не всегда безоговорочно полезны. В некоторых исследованиях было показано, что стресс и другие негативные воздействия тоже могут вызывать в клетках эпигенетические изменения – но они приводят к долгосрочным нежелательным последствиям.
Одно из самых серьезных доказательств этой связи было получено в лаборатории Майкла Мини из Университета Макгилла[951]
. В 1990-х гг. Мини со своими коллегами начал изучать, как крысы переносят стресс. Если крыс помещают в маленькую пластиковую коробочку, у животных возникает состояние тревоги и выделяются гормоны, учащающие пульс. Некоторые крысы реагируют на этот стресс сильнее, чем другие. После недолгого поиска Мини с коллегами нашел причину этих различий. Оказалось, что тех крыс, у которых выделяется много гормонов стресса, матери мало вылизывали в детстве.Вместе со своим коллегой по университету генетиком Моше Шифом Мини изучил физиологические различия, которые возникают у крысят из-за частого или редкого вылизывания. Исследователи знали, что в контроле стресс-реакции у млекопитающих принимает участие гиппокамп – отвечающая за формирование воспоминаний область мозга, где в течение всей жизни образуются новые нервные клетки. Когда гормоны стресса соединяются с рецепторами на нейронах гиппокампа, те запускают ответ, который в итоге прекращает их выработку.