В 2017 г., когда я приезжал к Мартиенсену в Колд-Спринг-Харбор, он все еще не видел никаких причин пересмотреть свой вывод. До сих пор исследования на животных и, в частности, на людях выявили слишком мало информации, чтобы стоило беспокоиться на этот счет. Он не видит убедительных механизмов, с помощью которых эпигенетические признаки могут передаваться через многие поколения животных.
Кроме того, Мартиенсена, похоже, немного забавляет, что он приобрел репутацию маловера. Он считает неубедительными доказательства для животных, но при этом сам бóльшую часть времени занимается растениями. А здесь доказательства эпигенетического наследования бесспорны. «В природе такое постоянно происходит», – сказал он мне.
Ботаники обнаружили первые признаки особого пути передачи наследственной информации еще в середине XX в. У зерен кукурузы появлялась новая окраска, но проявление этого признака у потомков не соответствовало закону Менделя, и иногда через несколько поколений вновь возникала прежняя. Внимательно изучив ДНК кукурузы, исследователи выяснили, что смена цвета не была связана с мутацией в каких-то генах. Менялась схема метилирования. Каждый раз, когда клетка растения делилась, она достраивала метильные группы в тех же местах на ДНК, где они располагались в материнской клетке. Однако время от времени клетка меняла эту схему: добавляла новые метильные группы туда, где их раньше не было, или убирала и не восстанавливала их. Эти изменения могли выключать или включать гены у растения, что приводило к разным последствиям и в том числе придавало новый цвет зернам кукурузы.
Такое странное наследование было выявлено также у других видов сельскохозяйственных и диких растений, в частности льнянки. Энрико Коэн с коллегами открыл, что трубковидный цветок пелории возникает из-за определенного, передающегося по наследству метилирования гена
По-видимому, растениям проще, чем животным, осуществить передачу эпигенетической информации между поколениями. У них, в отличие от животных, нет обособления клеток зародышевой линии в начале развития и нет сброса старого метилирования. Желудь красного дуба прорастает, его клетки развиваются в побеги и корни, и с годами их число увеличивается так, что получается дерево. Примерно через 25 лет оно оказывается готово к размножению и меняет программу некоторых клеток кончиков ветвей, превращая их в ботанический аналог стволовых клеток.
Эти клетки начинают быстро делиться, формируя цветки либо с пыльцой (растительный аналог сперматозоидов), либо с семязачатками (растительные аналоги яйцеклеток). Семязачатки оплодотворяются пыльцой от другого дерева и развиваются в желуди. На следующий год тот же дуб снова образует на кончиках веток стволовые клетки, из которых появляются цветки и половые клетки. Так будет продолжаться столетиями. Иначе говоря, прежде чем из соматической клетки образуется половая, проходит много делений и много времени, в течение которого эпигенетическая схема красного дуба может измениться. Поскольку растения не сбрасывают эпигенетические метки в половых клетках, молодой красный дуб может унаследовать эпигенетические изменения своих родителей.
Есть еще одна важная разница в эпигенетике растений и животных. Хотя растения прикрепляют к своим генам те же самые метильные группы, молекулы, посредством которых они это делают, различаются. Мартиенсен и другие исследователи открыли, что растения используют для этого молекулы малой РНК, каждая из которых подходит к определенному участку ДНК. Как только РНК достигает своей цели, она собирает вокруг себя белки, которые и прикрепляют метильные группы. Когда клетка делится, дочерние клетки получают эти молекулы РНК, которые продолжают контролировать работу генов.
Нечто похожее могло произойти и у пелории. Теперь, когда Мартиенсену удалось обнаружить последний в мире источник этих растений, он сможет проверить, правильна ли его догадка. Он планирует извлечь молекулы РНК из этих удивительных цветков. «Я надеюсь, – говорит он, – что у нас получится, наконец, разобраться с этим монстром и закрыть тему».
У животных в силу их биологических особенностей меньше возможностей для эпигенетического наследования, чем у растений. Тем не менее и для них эта возможность не закрыта полностью. Некоторые ученые продолжают в нее верить.