Читаем Основы AS/400 полностью

Технология слабо связанной параллельной базы данных позволяет разбивать запросы на части, с которыми может справиться отдельный узел. В отличии от SMP-па-раллельной базы данных, у каждого узла — собственные память и дисковое пространство. Каждый узел кластера работает с порцией физического файла или таблицы, и запрос к нему выполняется для соответствующей порции файла. Каждый узел может содержать один или несколько процессоров, ведь узел — это просто AS/400.

Приложение, выполняющееся на любом компьютере кластера, может работать с базой так, как если бы она полностью размещалась на этом компьютере. Распределенность базы по узлам кластера делает DB2/400 прозрачной как для приложений, так и для конечного пользователя. Для задания имен системам в группе узлов в CL были введены новые команды, к некоторым командам были добавлены новые параметры для поддержки распределения файлов базы по узлам. После рассредоточения по узлам, файл при выполнении операций вставки, обновления и удаления выглядит как локальный.

Главное преимущество слабо связанных параллельных систем — отсутствие верхнего предела количества узлов, что означает практически неограниченный рост производительности и емкости. Возможности расширения концепции кластеров AS/400 в будущем мы рассмотрим в главе 12.

Многомерные базы данных (MDD)

Реляционные базы данных организованы в виде двумерных таблиц. В MDD имеется одно или несколько дополнительных измерений. Например, Вам надо оценить свои доходы от продаж, рассмотрев в отдельности сводки по товарам, по регионам и по времени. В этом случае лучшую наглядность Вам обеспечит трехмерная структура данных со шкалой измерения по товарам на одной оси; временем в днях, неделях или месяцах — на второй; и географическими данными — на третьей. В результате получится куб, очень похожий на трехмерную электронную таблицу, в каждой ячейке которой — величина доходов от продажи. Далее можно использовать различные средства анализа продаж товаров в регионах в течение некоторого периода времени.

AS/400 поддерживает многомерные структуры данных непосредственно в самой базе данных DB2/400 или с помощью продуктов, разработанных бизнес-партнерами. Преимущество многомерных структур данных состоит в возможности быстро получить ответ на поставленный вопрос в виде среза данных по любому измерению или прохода сквозь структуру для получения данных новых уровней. Поскольку время ответа на запросы обычно очень мало, такой многомерный анализ часто называют оперативной аналитической обработкой OLAP (on-line analytical processing).

Иногда различным подразделениям одной организации требуются информационные данные в разных формах. Внутри MDD можно создавать специализированные хранилища данных (data mart), которые содержат информационные данные, соответствующие потребностям конкретного отдела или рабочей группы. В этом случае хранилище данных всей организации состоит из набора таких специализированных хранилищ для отдельных структурных единиц[ 49 ].

Анализ данных и инструментарий конечных пользователей

Термином «интеллектуальный бизнес» (business intelligence) обозначают методы обработки информации, применяемые для принятия решений в бизнесе. Средства интеллектуального ведения бизнеса — это программные пакеты, используемые для анализа данных в хранилище данных на AS/400. Обычно, эти программы работают на ПК и способны обращаться к хранилищу данных на AS/400 напрямую. Есть три основных категории бизнес-информационных средств:

программы поддержки принятия решений DSS (decision support system);

управленческие информационные системы EIS (executive information system);

средства разработки данных.

Программы DSS позволяют конечному пользователю строить гипотезу и затем генерировать запросы для ее проверки. При этом предполагается, что у пользователя есть некое общее представление о том, что нужно найти в хранилище данных, и это позволяет ему выдавать произвольные запросы и генерировать отчеты. Это средства простейшего типа, так как они просто возвращают информацию по запросу пользователя.

EIS объединяют средства поддержки принятия решений с некоторыми расширенными возможностями анализа. Обычно, они имеют доступ к средствам за пределами хранилища данных, например, могут использовать оперативные новости из Интернета для получения информации с мировых рынков. Как и DSS, EIS предполагает наличие у спрашивающего некоторого представления о том, что именно следует искать.

И EIS, и DSS обеспечивают поиск нужной пользователю информации путем проверок. Но как быть, если Вы не можете четко сформулировать вопрос? Вы знаете, что в базе данных скрыта важная информация, но не можете придумать, как до нее добраться. Тогда Вам нужна разработка данных — средство принятия решений на основе открытий.

Перейти на страницу:

Похожие книги

Веб-аналитика: анализ информации о посетителях веб-сайтов
Веб-аналитика: анализ информации о посетителях веб-сайтов

Компании в веб-пространстве тратят колоссальные средства на веб-аналитику и оптимизацию своих веб-сайтов, которые, в свою очередь, приносят миллиарды долларов дохода. Если вы аналитик или работаете с веб-данными, то эта книга ознакомит вас с новейшими точками зрения на веб-аналитику и то, как с ее помощью сделать вашу компанию весьма успешной в веб. Вы изучите инструментальные средства и показатели, которые можно использовать, но что важнее всего, эта книга ознакомит вас с новыми многочисленными точками зрения на веб-аналитику. Книга содержит много советов, приемов, идей и рекомендаций, которые вы можете взять на вооружение. Изучение веб-аналитики по этой уникальной книге позволит познакомиться с проблемами и возможностями ее современной концепции. Написанная практиком, книга охватывает определения и теории, проливающие свет на сложившееся мнение об этой области, а также предоставляет поэтапное руководство по реализации успешной стратегии веб-аналитики.Эксперт в данной области Авинаш Кошик в присущем ему блестящем стиле разоблачает укоренившиеся мифы и ведет по пути к получению действенного понимания аналитики. Узнайте, как отойти от анализа посещаемости сайта, почему основное внимание следует уделять качественным данным, каковы методы обретения лучшего понимания, которое поможет выработать мировоззрение, ориентированное на мнение клиента, без необходимости жертвовать интересами компании.- Изучите все преимущества и недостатки методов сбора данных.- Выясните, как перестать подсчитывать количество просмотренных страниц, получить лучшее представление о своих клиентах.- Научитесь определять ценность показателей при помощи тройной проверки "Ну и что".- Оптимизируйте организационную структуру и выберите правильный инструмент аналитики.- Изучите и примените передовые аналитические концепции, включая анализ SEM/PPC, сегментацию, показатели переходов и др.- Используйте решения с быстрым началом для блогов и электронной торговли, а также веб-сайтов мелкого бизнеса.- Изучите ключевые компоненты платформы экспериментирования и проверки.- Используйте анализ конкурентной разведки для обретения понимания и принятия мер.Здесь также находятся:- Десять шагов по улучшению веб-аналитики.- Семь шагов по созданию управляемой данными культуры в организации.- Шесть способов замера успеха блога.- Три секрета создания эффективной веб-аналитики.- Десять признаков великого веб-аналитика.

Авинаш Кошик

ОС и Сети, интернет