Вследствие деятельности человека величина экосистемной продуктивности углерода (то есть степени разомкнутости его баланса в экосистеме) возрастает и начинает оказывать решающее влияние на глобальные геоэкологические процессы. В разделе, посвященном факторам парникового эффекта, например, указывалось, что вследствие антропогенного преобразования экосистем, главным образом в тропической и экваториальной зонах, в атмосферу из ландшафтов Земли (то есть из биосферы) выносится 1,6± 1,0 млрд т углерода в год, что составляет уже 3 % первичной продукции, а это говорит о высокой степени разомкнутости баланса углерода и органического вещества экосферы.
Одна из моделей современного цикла углерода для суши показала, что при глобальной чистой первичной продукции экосистем суши, равной 60,6 млрд т углерода в год, экосистемная продукция составила 2,4 млрд т углерода, или 4 % первичной продукции. На 2050 г. ожидается, что чистая первичная продукция составит 82,5 млрд т в год при экосистемной продукции, равной 8,1 млрд т. Таким образом, степень разомкнутости увеличится до 10 %, что указывает на прогрессирующее неблагополучие экосферы, если только стратегия человечества в отношении проблем геоэкологии не будет коренным образом изменена.
Антропогенное нарушение глобальных и локальных циклов углерода связано со многими факторами. Суммарная для мира первичная биологическая продуктивность неизмененных человеком ландшафтов («потенциальных ландшафтов») представляет, по-видимому, верхний предел глобальной естественной биопродуктивности. Антропогенные воздействия, преобразующие ландшафты, приводят, как правило, к снижению биопродуктивности. Например, земледелие в мире использует 15 млн кв. км земли, на которых выращивается примерно 2500 млн т сельскохозяйственных продуктов (в сухом весе). Таким образом, средняя урожайность составляет 17 ц/га, в то время как средняя биологическая продуктивность суши равна 43 ц/га.
Значительна роль биоты в глобальном гидрологическом цикле. Поскольку живое вещество приблизительно на 90 % состоит из воды, то ежегодно биота связывает во вновь фотосинтезированном органическом веществе 60 млрд т углерода и порядка 500 куб. км воды. В процессе синтеза органического вещества растительность пропускает сквозь себя на два порядка больше воды, чем то количество, которое в конце концов оказалось связанным в органическом веществе. Эта вода забирается растениями из почвенной влаги, участвует в функционировании растений, а затем транспирирует в атмосферу. Таким путем в биологическом звене глобального круговорота воды (гидрологического цикла) участвует около 30 тыс. куб. км воды в год. Это около 25 % суммарного количества осадков, выпадающих на поверхность суши.
Величина солнечной энергии, используемой для построения органического вещества в процессе фотосинтеза, составляет 133х1012
ватт. Это в 13 раз больше общемирового потребления энергии человеком, но всего лишь 0,16 % приходящей к поверхности Земли солнечной радиации. Отношение затрат энергии на синтез биомассы к общему количеству поглощенной солнечной радиации находится в пределах от 0,1 до 1 %, а в среднем порядка 0,5 % (М. И. Будыко). Средняя величина коэффициента использования фотосинтетически активной солнечной радиации (ФАР), приходящей в течение вегетационного периода, растительным покровом территории бывшего СССР составляет примерно 0,8 %, с колебаниями от 0,1 % в пустынях Средней Азии до 1,8–2,0 % на Черноморском побережье Кавказа. Средний для СССР коэффициент использования суммарной солнечной радиации составляет около половины коэффициента использования ФАР, или примерно 0,4 %.