Читаем Основы психофизиологии полностью

Следует пояснить ещё раз, что не все единицы памяти, т.е. не все ансамбли актуализированы одновременно. Только небольшое число М ансамблей актуализировано в каждый текущий момент времени. Это число служит мерой объёма внимания.

Если человек сосредоточил внимание в определённый момент времени на запоминании двоичных элементов (нулей и единиц), то наименьший объём внимания равен размеру объективно заданного двоичного алфавита, знакомого ему, т.е. М = А = 2. Наибольший объём внимания равен следующему произведению: М = A х Н (в данном примере М = 2 х Н,

где Н – коэффициент пропорциональности, равный объёму кратковременной, или рабочей, памяти для запоминаемых элементов).

Кратковременная память Н измеряется максимальным числом элементов, не обязательно разных и правильно воспроизведённых с учётом их значения и позиции в ряду после однократного восприятия. Длительность однократного восприятия не превышает 2–10 с.

Из уравнения (2) следует простое правило для прогноза ёмкости кратковременной памяти на комбинации признаков, если измерены ёмкости на каждый из признаков в отдельности:

(3)

где Н – искомый объём для комбинации; H 1, H

2 , H 3 – объёмы кратковременной памяти на исходные признаки.

Эта формула, выведенная аналитически из предыдущей, предсказала существование нового феномена, ранее неизвестного в психологии (кроме того, с высокой степенью точности). Ошибка прогноза в разных опытах Н.А. Скопинцевой, Л.П. Бычковой, М.Н. Сыренова и других исследователей по проверке формулы (3) нередко составляла всего 3–5%. Сравните этот показатель с 25–35% по правилу Миллера, которое в этой ситуации работает неудовлетворительно. По Миллеру, такая задача неразрешима.

В работах И.Ю. Мышкина и В.В. Майорова [Мышкин, Майоров, 1993], плодотворно развивающих теорию динамической памяти, а также в других исследованиях [Маркина и др., 1995] были установлены искомые зависимости объёма памяти от параметров электроэнцефалограммы. Таким образом, была реализована цель И.П. Павлова – количественно объяснить известные психологические явления и предсказать новые с помощью физиологических понятий (причём фундаментальные психологические явления, описывающие объём памяти и её быстродействие).

Примечательно, что в уравнения для расчёта ёмкости памяти человека и её быстродействия входят два параметра ЭЭГ, частотная рефрактерность ( R) и доминирующая частота ( F). Они являются, как принято говорить после П.К. Анохина, системообразующими параметрами, должными объяснить множество психологических показателей.

Уравнения (1), (2) вместе с их выводом и экспериментальной проверкой детально рассмотрены в некоторых работах [Лебедев, 1982; Лебедев и др., 1985].

Найденные физиологические формулы памяти и её быстродействия обеспечили решение двух старинных психологических проблем. Нас интересует, в первую очередь, проблема моментального выбора, поиска нужных сведений в памяти, сведений, необходимых на каждом шаге для реализации целенаправленного поведения.

В когнитивной психологии, пожалуй, больше всего литературы по парадигме С. Стернберга, ученика Д. Луса, касающейся скорости поиска сведений в памяти [Sternberg, 1969]. С. Стернберг придумал методику для определения такой скорости. Выявилась яркая зависимость скорости от размера ряда запомненных стимулов. П. Кавана [Cavanagh, 1972] обработал данные множества исследователей и обнаружил константу около 1/4 с, характеризующую время сканирования всего содержимого кратковременной памяти независимо от содержания запомненного материала.

По методике С. Стернберга, человек сначала запоминает ряд стимулов, например цифр, как целое, – как единичный образ, – и удерживает этот новый образ до момента появления одного-единственного стимула, который входит в запомненный набор (или, напротив, не входит в него), отвечая нажатием на соответствующую клавишу. В этом случае, по условиям опыта, параметр М из уравнения (1) равен объёму Н кратковременной памяти, а параметр К= 1.

Для сличения одного образа стимула с предъявленным требуется t/ H времени, а для опознания предъявленного стимула, если его образ присутствует в запомненном ряду, требуется в сумме от 1 до числа Н сличений, в среднем (1+ Н )/2 сравнений, т.е. 0,5( Н

+ 1) t/ H единиц времени, что равно 0,25 с при типичных значениях F = 10 Гц и R= 0,1.

Вычисленная из физиологических данных величина отличается от опытного значения, определённого Кавана по множеству психологических данных, менее чем на 3%. Интересно заметить, что при Н = 1 (разумеется, по условиям измерения К = 1) время сличения по формуле (1) минимально (около 5 мс). Оно равно константе Гайсслера, с точностью до 0,3 мс [Geissler, 1990].

Для оценки среднего прироста времени при Н > 1 в расчёте на один стимул следует разделить найденное значение 0,5(Н + l) t/ H времени сканирования всего содержимого кратковременной памяти на количество приращений ( Н - 1) стимульного ряда. Психологические данные полностью согласуются с физиологическим расчётом [Лебедев и др., 1985; Lebedev, 1990].

Перейти на страницу:

Похожие книги

Эволюция на пальцах
Эволюция на пальцах

Хотели бы вы снова от звонка до звонка 10 лет отсидеть за школьной партой? Вряд ли… Школа запихивает в голову огромную кучу знаний, только вот раскиданы они беспорядочно и поэтому остаются невостребованными. Что вот вы помните из школьной программы про теорию эволюции? Обезьяны, Дарвин, гены… Эх, невелик набор, да и системы в нем нет.Эта книга знакомит детей и родителей, которые хотели бы рассказать своим детям о мире, с понятием эволюции. Причем речь идет не только о биологической эволюции, чего, наверное, можно было бы ожидать. Эволюция в более широком смысле происходит не только в мире живых организмов, но и в технике, в биохимии, в геологии, в мире звёзд, в психологии.Почему мир именно таков, как в нём возникают сложные структуры, по каким законам они развиваются? Этого не преподают в школе так, как надо бы преподавать — нанизывая на единую ось эволюционного понимания геологию, физику, химию, биологию и общественные науки. Если ваш ребёнок прочтет эту книгу, он окажется на голову выше прочих детей в школе. А вам будет приятно.

Александр Петрович Никонов

Детская образовательная литература