Читаем Особенности расчета дифференциального высокочастотного фильтра полностью

Особенности расчета дифференциального высокочастотного фильтра

При проектировании радиотехнических устройств авторы статьи столкнулись с тем, что не смогли найти методику расчета высокочастотного фильтра для схем с дифференциальным входом/выходом. Имеются методики и программы расчета для обычных фильтров, а вот для дифференциальных фильтров ничего нет. Пришлось такую методику разрабатывать самим, и уже по ней рассчитывать нужные дифференциальные фильтры. Статья посвящена особенностям расчета высокочастотного фильтра для схем с дифференциальным входом/выходом. Приведенные в статье методики могут быть полезны для разработчиков радиотехнических устройств. Опубликовано: Международная конференция «Радиоэлектронные устройства и системы для инфокоммуникационных технологий», Доклады, РЭУС, Москва 2015, с. 389 – 391. Article is devoted features of calculation of the high-frequency filter for schemes with a differential input/exit.

Владимир Иванович Шлома , Сергей Владимирович Макаров

Технические науки18+

Владимир Шлома, Сергей Макаров

Особенности расчета дифференциального высокочастотного фильтра

Краткий анализ существа вопроса

При проектировании специализированного цифрового радиоприемного устройства, предназначенного для контроля параметров излучений базовых и абонентских станций ТЕТРА, встала задача расчета электрической схемы фильтров нижних частот, имеющих дифференциальные вход и выход.

Теория и практика расчета высокочастотных фильтров проработаны очень глубоко [1 – 5], кроме того в интернете достаточно много программ по расчету фильтров, таких как RFSm99, которые, после подстановки исходных данных для расчета, позволяют сразу получить достаточно точный результат вычислений. Никаких трудностей в решении этой задачи не предвиделось.

Однако, простая, на первый взгляд, задача оказалась не очень простой. Нам не удалось найти каких-либо теоретических разработок или практических рекомендаций по расчету именно дифференциальных фильтров. Во всех доступных нам источниках, в том числе и программах, рассматриваются вопросы расчета простых (без дифференциального входа/выхода) фильтров.

Задачу расчета фильтра с дифференциальным входом/выходом пришлось решать самостоятельно. При решении задачи были рассмотрены два варианта преобразования схемы обычного фильтра в дифференциальный.

Первый вариант преобразования

Схема обычного фильтра нижних частот показана на рис. 1.



Рисунок 1. Схема простого фильтра нижних частот

Фильтр состоит из двух элементов: L и C. Входное сопротивление Rвх и выходное сопротивление фильтра Rвых показаны на схеме условно. Фильтр подключается к некоторому источнику с выходним сопротивлением Rи. К выходу фильтра подключается нагрузка Rн. При расчете фильтра обязательно должны быть согласованы входное и выходное сопротивления фильтра: Rвх=Rи, Rвых=Rн.

Для создания дифференциального фильтра был предложен наиболее простой вариант: собрать дифференциальный фильтр из двух одинаковых обычных, как показано на рис. 2.



Рисунок 2. Объединение двух простых фильтров


На рис. 2 номиналы элементов связаны с рис. 1 следующими соотношениями: L1=L2=L, С1=С2=С.

Из рисунка 2 видно, что полученный фильтр не согласован по сопротивлениям. Входное и выходное сопротивление фильтра в два раза больше требуемого. Для того, чтобы согласовать сопротивления, при расчете одного плеча фильтра (простого фильтра) нужно исходить из условия: Rвх=Rи/2, Rвых=Rн/2. Фильтр нужно пересчитать исходя из новых условий. При пересчете получим новые значения номиналов L и С. Конденсаторы С1 и С2 можно заменить одним конденсатором С1. Поскольку С1=С2=С, то емкость нового конденсатора С1 должна быть С/2. Окончательная схема дифференциального фильтра приведена на рис. 3.




Рисунок 3 Схема согласованного дифференциального фильтра


Теперь дифференциальный фильтр будет согласованным по сопротивлениям и иметь требуемую амплитудно-частотную характеристику.

Аналогично по схеме рис.3 можно преобразовывать в дифференциальные и более сложные фильтры. При этом нужно соблюдать следующие правила:

1.      расчет элементов обычного фильтра производить исходя из условия: Rвх=Rи/2, Rвых=Rн/2;

2.      элементы, включенные в фильтре последовательно, имеют те же номиналы, которые были получены при расчете обычного фильтра;

3.      элементы, включенные в фильтре параллельно, нужно пересчитать. Номинал индуктивностей нужно увеличить в 2 раза, а номинал конденсаторов уменьшить в 2 раза по отношению к рассчитанным для обычного фильтра.

Второй вариант преобразования

Второй вариант заключается в последовательном преобразовании схемы обычного фильтра по известным в теории фильтров правилам.

Поскольку дифференциальный фильтр не имеет соединений с корпусом, в схеме фильтра рис.1 уберем все соединения с корпусом. Получим схему обычного фильтра, представленную на рис.4.



Рисунок 4. Обычный фильтр

Как видно из рис. 4 это Г-образный фильтр. Преобразуем его в Т‑образный фильтр, используя известные [1, 2, 4] правила: включенные последовательно катушки индуктивности и конденсаторы разбиваются на два с номиналами L1=L2=L/2, C1=C2=2C, элементы, включенные параллельно, не изменяются. В результате таких преобразований получим схему, представленную на рис.5.



Рисунок 5. Т-образный фильтр

Получили Т-образный фильтр, по своим характеристикам эквивалентный приведенному на рис.4. Номиналы катушек индуктивности L1=L2=L/2.

Переместим катушку индуктивности L2 по цепи протекания тока в нижнее плечо, таким образом, чтобы величина протекающего в цепи тока не изменилась. Условно показанное на схеме рис. 5 входное сопротивление Rвх разобьем на два с номиналами Rвх/2 и одно перенесем в нижнее плечо. В результате получаем схему согласованного дифференциального фильтра, приведенную на рис. 6.



Рисунок 6. Дифференциальный фильтр

На рис. 6 номиналы элементов связаны с рис. 4 следующими соотношениями: L1=L2=L/2, номинал конденсатора не изменился.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки