Эйнштейн предлагал новое видение природы гравитации. Он описывал ее не как загадочное ньютоновское «воздействие на расстоянии», а как эффект, возникающий в результате искривления пространства вокруг массивных объектов. Пространство эластично, а степень его искривления зависит от концентрации массы в том или ином регионе. Небольшие объекты слабо деформируют пространство вокруг себя, а большие вызывают более сильные изменения. Поэтому деформация вокруг человеческого тела незаметна (хотя она и существует), а вот деформация вокруг Солнца гораздо более выражена. В ходе опыта с затмением проводились измерения света дальних звезд в момент, когда они проходили рядом с Солнцем. Звезды были выбраны таким образом, чтобы Солнце находилось на пути между ними и Землей для их света. Затмение на время скрыло солнечный свет, позволив астрономам увидеть дальние звезды и сравнить их положение на небе с тем, которое наблюдалось при отсутствии Солнца как помехи. Если пространство вокруг Солнца действительно искривлено, то звездный свет отклонился бы от своего первоначального маршрута и звезды стали бы видны в других местах. Эйнштейн использовал свою теорию, чтобы рассчитать видимые глазу различия в положении звезд, возникающие в присутствии Солнца. Результаты эксперимента нельзя было назвать полностью ясными, но и их было достаточно для подтверждения его теории.
Уравнения, включенные в общую теорию относительности, можно использовать для расчета искривления пространства вокруг любого массивного объекта, а не только Солнца. По мере движения от далекого источника свет отклоняется то в ту, то в другую сторону, реагируя на пространственные неровности.
Еще в одном эксперименте Эйнштейн использовал искривление пространства для объяснения хорошо известных ученым аномалий в орбите Меркурия, перед которыми оказался бессилен закон всемирного тяготения Ньютона. Успех теории был закреплен, и очень скоро ее начали считать величайшим достижением человеческой мысли в истории.
Но на присутствие материи реагирует не только пространство, но и время. В своей специальной теории относительности, созданной в 1905 году, то есть за десять лет до выведения более общей версии, Эйнштейн показал, что время и пространство нельзя рассматривать как абсолютные величины, как было принято со времен Эйнштейна. Кроме того, нельзя и разделять их, так как они формируют единое целое – пространственно-временной континуум, в котором время играет роль четвертого измерения. Соответственно, присутствие материи (или энергии в целом) искривляет и пространство, и время (или лучше сказать «пространство-время»).
Идея пространственно-временного континуума проще, чем кажется на первый взгляд. Представьте, что вы видите у себя в комнате муху и через пять секунд убиваете ее. Когда вы заметили муху впервые, она находилась в определенной точке в пространстве, а время на «мушиных часах» составляло 0 секунд. Когда вы ее прихлопнули, местоположение мухи в пространстве изменилось и прошло 5 секунд. Для того чтобы точно указать, где и когда погибла муха, вам нужно знать точку в пространстве и момент во времени. Для того чтобы связать время с расстоянием, оно умножается на скорость. Эйнштейн выбрал для этого скорость света, которую считал самой высокой в природе. Скорость света в вакууме составляет 186 282 мили в час и обычно обозначается буквой