Глава 11. Космическая слепота
в которой мы рассмотрим концепцию космических горизонтов и выясним, как они ограничивают наши знания о Вселенной
По мере приближения к современной космологии становится все интереснее и интереснее. Сочетание Вселенной, имеющей ограниченный возраст (ведь время возникло в момент Большого взрыва), и конечности скорости света создает непреодолимый барьер для нашего познания космоса. Данный барьер совершенно не похож на те, которые мы видели до этого, потому что он не зависит от точности наших измерительных приборов, то есть от нашей «близорукости» в отношении реальности. Это абсолютная граница возможных знаний о физическом мире, о которой даже не подозревали Галилей, Коперник и Ньютон. Пространство Вселенной может быть бесконечным, но мы никогда не узнаем этого наверняка. Мы живем в информационном пузыре, как рыбки в аквариуме. За этим пузырем тоже что-то есть, мы можем делать выводы об этом, исходя из тех неясных образов, что мы видим через его стенки, но нам никогда не узнать наверняка, что за ними скрывается. Три века назад де Фонтенель уже понимал, что агония и экстаз научного и философского познания проистекают из желания знать больше, чем мы можем увидеть. Мы тянемся к границе познания, рискуя разбить себе голову о стекло. Так же как и наши предшественники, мы мечтаем освободиться от ограничений и коснуться неведомого. Но теперь это невозможно. То, что находится за установленными границами, останется неизвестным.
Теории относительности Эйнштейна устанавливают довольно жесткие ограничения для тех, кто мечтает путешествовать во времени в прошлое. Специальная теория прямо заявляет, что это невозможно, так как по мере достижения скорости света масса объекта бесконечно возрастает. Однажды, во время традиционного метафизического спора по дороге в школу, мой шестилетний сын Луциан гордо заявил мне: «Папа, только одна штука может двигаться со скоростью света. Это свет!» Что ж, это верно. И ему это удается потому, что у света нет массы. Любая частица материи, даже находящаяся в состоянии покоя, будет иметь энергию, равную ее массе
Для того чтобы создать свою формулу энергии света, Эйнштейн предложил теорию, которую он сам считал своей самой революционной идеей. Он заявил, что свет можно одновременно интерпретировать и как волну (как считали большинство ученых в XIX веке), и как частицу. Частицы света называются фотонами, а формула
На практике в одном световом потоке могут находиться фотоны с разной длиной волны. К примеру, солнечный свет состоит из всех видимых цветов, от красного до фиолетового, а каждый цвет имеет свою длину волны и свои фотоны. Если продолжить нашу финансовую аналогию, солнечный свет – это клиент, который приходит в обменный пункт с множеством разных валют (цветов спектра), и при этом каждая из них имеет свой вариант цента (фотон с энергией, равной
Большая часть информации о Вселенной поступает к нам в форме электромагнитного излучения. В качестве примера можно привести оптическую астрономию – благородную традиционную технологию, предполагающую сбор фотонов видимого света невооруженным глазом или с помощью телескопа. Сегодня астрономы рассматривают небеса почти во всем электромагнитном спектре, от радио – до гамма-волн. Однако на какой тип света мы бы ни смотрели, его скорость все так же ограничена.[59]
Когда вы читаете эту книгу, вы видите страницу такой, какой она была одну миллиардную долю секунды назад. Луна представляется нам такой, какой она была 1,282 секунды назад, так как расстояние от нее до Земли составляет 1,282 световой секунды. Солнце выглядит в наших глазах таким, каким оно было 8,3 минуты назад, ведь расстояние до него – 8,3 световой минуты. Прямо