Здоровая наука – это сочетание смирения и надежды. Мы должны смириться с размерами нашего незнания, но при этом надеяться, что новые открытия смогут пролить на него немного света. Однако если мы находимся на самой границе познания нового, но не можем получить подтверждающих данных, нашей единственной стратегией остаются обоснованные предположения. Без воображения наука не может двигаться вперед.
Было бы упущением с моей стороны не рассказать о вкладе теории струн в понятие Мультивселенной. Несколько моих коллег, приверженцев этой теории, написали о ней ряд популярных работ, на которые я ссылаюсь в библиографии. Тем читателям, которые хотели бы узнать больше о теории струн, я в первую очередь рекомендую книги Брайана Грина и Леонарда Сасскинда. Для всех остальных же будет достаточно и следующих глав этой книги.[73]
Глава 15. Интерлюдия: прогулка по струнному ландшафту
в которой вводится понятие струнного ландшафта и объясняется, что такое антропная мотивация
Для того чтобы теория суперструн имела математический смысл, струны должны существовать более чем в трех измерениях. Это создает для теории определенные затруднения, ведь теперь она должна дополнительно объяснить, почему мы видим всего три из этих измерений. Кроме того, важно знать, сколько их всего. Четыре, пять, двадцать? Теория струн вводит понятие новой симметрии Вселенной – суперсимметрии. Я уже упоминал ее, когда мы обсуждали темную материю, но сейчас настало время поговорить о ней более подробно. Насколько нам известно, в Природе существует два типа частиц – те, из которых состоит материя (электроны, кварки и некоторые другие), и те, которые переносят силы (фотоны для электромагнитных сил, гравитоны для гравитации, менее известные глюоны, удерживающие кварки внутри протонов и нейтронов, и тяжелые частицы Z0
, W+ и W—, переносчики слабого ядерного взаимодействия, ответственного за радиоактивный распад). Суперсимметрия означает, что частицы материи могут превращаться в частицы силы и наоборот. В результате, каждая частица имеет своего «суперсимметричного партнера»: у электрона он будет называться селектроном, у любого из кварков – скварком и т. д.У вас мог возникнуть вопрос: зачем кому-то понадобилось удваивать количество элементарных частиц в Природе? Ответ (и изначальный толчок к введению понятия суперсимметрии в середине 1970-х) состоит в том, что теории суперсимметрии могут объяснить, почему пустое пространство имеет нулевую энергию. Если бы это было не так, если бы в космосе имелась какая-то остаточная энергия, она бы действовала как космологическая постоянная, ускоряющая расширение Вселенной. В середине 1970-х ученые еще не располагали доказательствами существования расширения, поэтому и ввод подобной постоянной был невозможен. Темная энергия была открыта в 1998 году, и до этого момента предполагалось, что космическая постоянная равна нулю. Суперсимметрия предлагалась в качестве объяснения того, почему это так.
Проблема состояла в
Объяснение небольших значений – это довольно сложная задача в физике. Тем не менее у теории суперсимметрии есть и другие точки приложения. Например, она может объяснить, почему масштаб, с которым частицы получают массы под воздействием бозона Хиггса, намного (почти в 16 раз) меньше, чем масштаб, при котором наблюдаются колебания пространства-времени в результате квантовых эффектов. Кроме того, она может предложить некоторые объяснения темной материи. В связи с этим, несмотря на отсутствие свидетельств ее существования (эксперименты, направленные на поиски предсказанных ей частиц, ничего не выявили), суперсимметрия все еще остается прочно укоренившейся в умах многих физиков.