Разница между дыханием и горением в том, что при горении энергия выделяется сразу, а при дыхании — постепенно, маленькими порциями, в процессе, состоящем из ряда регулируемых этапов. Именно эта разбивка на порции позволяет захватывать выделяемую энергию и запасать ее в молекулах АТФ. Это было бы невозможно, если бы выделение энергии происходило бурно, как при горении или тем более при взрыве.
Дыхание — это окислительно-восстановительная реакция. Как мы уже знаем, окислительно-восстановительными называются такие реакции, в которых происходит перенос электронов от некоего донора (восстановителя) к некоему акцептору (окислителю). Окислительно-восстановительные реакции, идущие в живых организмах, катализируются ферментами, которые называются
Дыхание используется гетеротрофными организмами. Значит, исходным субстратом для него всегда будет органическое вещество. Как вообще может выглядеть окисление органических молекул? Например, можно отобрать атомы водорода у двух соседних атомов углерода, вынудив последние образовать между собой двойную связь. Есть и другой широко распространенный вариант: отнятие водорода у спиртовой группы (C−OH), на месте которой в результате образуется альдегидная или кетонная группа (C=O). Вот уравнения соответствующих реакций:
−CH2
−CH2− → −CH=CH− + 2H+ + 2e−−CHOH− → −CO− + 2H+
+ 2e−Обратим особое внимание на правую часть этих уравнений, где значится отобранный у органических молекул водород. Мы знаем, что атом водорода состоит из одного протона (H+
) и одного электрона (e−). Сейчас в наших уравнениях эти частицы записаны по отдельности. И не случайно: их дальнейшая судьба может быть разной.Итак, куда же деваются частицы, отобранные у окисленной органической молекулы (H+
и e−)? С протонами все просто: их всегда можно сбросить в водный раствор, где они прекрасно себя чувствуют (другими словами, для них энергетически выгодно нахождение там). При надобности их легко можно будет оттуда же и взять. Реакция диссоциации воды (H2O ⇌ H+ + OH−) идет постоянно, поэтому любой водный раствор в любой момент содержит практически неограниченный запас протонов.А вот электроны в свободном виде в водном растворе существовать не могут. Для них нужен специальный переносчик. Любой фермент, отнимающий у кого-то водород, должен обязательно содержать в себе ловушку для электронов. Причем в реальности такими ловушками служат не аминокислоты, входящие в состав фермента (как можно было бы подумать), а особые молекулы, связанные с ферментом, однако сами имеющие небелковую природу. Их называют
Самый распространенный связанный кофактор называется
Fe3
+ + e− ⇌ Fe2+Именно за счет этой реакции гем и служит отличным переносчиком электронов. Когда надо, он присоединяет электрон, когда надо — отдает.
Самый распространенный свободный кофактор —
• рибоза (две штуки);
• фосфат (две штуки);
• аденин;
• амид никотиновой кислоты, он же просто никотинамид.