Первыми в истории Земли полноценными репликаторами, скорее всего, были молекулы РНК (см. рис. 13.1). Дело в том, что из всех биологически активных молекул только РНК может выполнять сразу все жизненно важные функции: и хранение наследственной информации, и ее копирование, и катализ реакций обмена веществ. Белки и их предшественники, более простые пептиды, никогда таких возможностей не имели. Тем не менее первые пептиды наверняка появились примерно в те же времена, что и первые РНК. Это следует из чисто химических соображений. Дело в том, что синтез РНК довольно сложен, а вот аминокислоты — причем именно альфа-аминокислоты, из которых пептиды обычно состоят, — достаточно легко синтезируются из самых простых молекул, например из угарного газа (CO) и циановодорода (HC≡N), в условиях, примерно соответствующих вероятным условиям в окрестностях древних вулканов[224]
. Поэтому существование эволюционного этапа, когда автокаталитические системы состояли бы исключительно из РНК, маловероятно[225]. Скорее всего, эволюция пептидов и РНК была сопряженной всегда, еще со времен их гораздо более простых общих предшественников. Возможно, что дополнительной (в придачу к самокопированию) задачей первых репликаторов как раз и был катализ синтеза пептидов, влиявших на химическую среду таким образом, чтобы эти репликаторы с большей вероятностью могли выжить.С другой стороны, из современного опыта мы знаем, что белки — более мощные катализаторы, чем РНК, и их возможности в этом плане несравненно разнообразнее. Поэтому неудивительно, что те РНК, которые «научились» катализировать синтез каких-нибудь особых пептидов, получили преимущество в выживании. В результате пептиды (или уже белки?) стали использоваться репликаторами в качестве своего рода молекулярных инструментов, которыми можно было действовать на среду, повышая свои шансы уцелеть и размножиться. Конкурируя друг с другом, РНКовые репликаторы постепенно совершенствовали способность программировать синтез белков, делая это все более и более точно. И в конце концов они «изобрели» механизм трансляции на рибосоме[226]
. Этот механизм позволяет запрограммировать всю структуру белка сСледующим важным эволюционным событием был перенос генетической информации с РНК на ДНК. Дело в том, что молекула РНК всем хороша, но вот химическая устойчивость у нее низкая и разрушается она довольно легко. Поэтому длительно хранить на ней генетическую информацию — дело ненадежное. Для этого предпочтителен какой-нибудь другой полимер. Им-то и стала ДНК. Если первые РНК вполне могли синтезироваться спонтанно в неживой природе, то синтез ДНК уже со всей определенностью является «изобретением» живых организмов, и эта молекула с самого начала получила единственную функцию: хранить информацию. Ничего другого она делать не умеет. Одно-единственное преимущество, которое имеет ДНК перед РНК, — ее высокая химическая устойчивость, позволяющая долго и надежно храниться. Для того, кто владеет уникальным «ноу-хау» синтеза каких-нибудь полезных белков, это по-настоящему ценно.
Таким образом, началась эпоха великой перезаписи геномов с РНК на ДНК. В начале этой эпохи на Земле жили РНК-содержащие организмы, которые наверняка уже освоили к тому моменту технологию точного синтеза белка. Иными словами, ДНК появилась эволюционно позже, чем трансляция. Вполне возможно, что генетическая стратегия первых ДНК-содержащих организмов была похожа на генетическую стратегию ретровирусов (см. главу 12). В жизненном цикле вирусов этого типа есть обязательная стадия ретротранскрипции, то есть обратной транскрипции — переноса генетической информации с РНК на ДНК[227]
. А вот собственного механизма репликации ДНК у ретровирусов нет. И у клеточных организмов его тоже, скорее всего, вначале не было. Надежные ферменты репликации (они называются ДНК-зависимые ДНК-полимеразы) появились позже. Но уж когда они появились, это дало возможность хранить на ДНК генетическую информацию непрерывно, при необходимости сразу перезаписывая ее с одной молекулы ДНК на другую. И тогда ретротранскрипция стала не нужна.В результате образовалась самая привычная нам форма жизни: ДНК-содержащая клетка с генетической стратегией «ДНК-РНК-белок».