Надо было разозлить вас раньше
Статья называлась «Конфигурации полипептидных цепей в кристаллических белках»[187]
, а написали ее три светила: Лоренс Брэгг, нобелевский лауреат по физике 1915 года, и два молекулярных биолога, которым еще предстояло получить Нобелевскую премию по химии в 1962 году – Джон Кендрю и Макс Перуц, все трое – из лаборатории Кавендиша в Кембридже. В то время эта знаменитая лаборатория была всемирным центром рентгеновской кристаллографии. В целом рентгеновская кристаллография была детищем Брэггов: Лоренс Брэгг и его отец сэр Генри Брэгг вместе трудились над математической моделью этого физического феномена и разработали экспериментальную методику.Идея рентгеновской кристаллографии проста до гениальности[188]
. Еще с начала XIX века физики понимали, что если направить видимый свет на решетку с равным расстоянием между прутьями, а позади решетки поставить экран, то свет, пройдя сквозь нее, формирует на экране дифракционный узор из темных и светлых пятен. Светлые пятна получались в тех местах, где световые волны из разных щелей в решетке усиливали друг друга, а темные – там, где различные волны подвергались деструктивной интерференции (там, где пик одной волны накладывался на минимум другой). Однако, кроме того, физики знали, что для формирования дифракционного узора расстояния между щелями должно быть того же порядка, что и длина волны светового излучения (расстояние между двумя соседними пиками волны). Хотя создать подобные решетки с тончайшими прорезями для видимого света было относительно легко, сделать их для рентгеновских лучей оказалось невозможно: типичная длина волны для рентгеновского излучения в тысячи раз короче длин волн видимой части спектра. Первым, кто понял, что решетками для установок, на которых проводятся эксперименты по дифракции рентгеновского излучения, могут послужить встречающиеся в природе периодические кристаллы, был немецкий физик Макс фон Лауэ. Лауэ обнаружил, что межатомные расстояния в кристаллах были в точности того же порядка, что и предполагаемые длины волн рентгеновского излучения. Лоренс Брэгг пошел по стопам Лауэ и сформулировал математический закон, который описывает дифракцию рентгеновских лучей на кристаллической структуре. Как ни поразительно, этот важнейший результат он получил еще на первом курсе магистратуры в Кембридже. Семейная команда, состоящая из Генри и Лоуренса Брэггов, построила затем рентгеновский спектрометр, который позволил им проанализировать структуру самых разных кристаллов. Кстати, Лоуренс Брэгг – самый молодой в истории нобелевский лауреат: когда он получил премию, ему было всего 25 лет!Учитывая все эти регалии, можно представить себе, что когда Полинг увидел название статьи, которую написали Брэгг, Кендрю и Перуц, сердце у него екнуло. И из первых двух абзацев вполне можно было сделать вывод, что команда Брэгга обошла его у самого финиша: «Белки состоят из длинных цепочек аминокислотных остатков… В данной статье сделана попытка собрать как можно больше информации о природе цепочки по данным рентгеновских исследований кристаллических белков и изучить возможные типы цепочек, которые соответствуют имеющимся данным»[189]
. Полинг быстро прочитал все 36 страниц статьи и с облегчением обнаружил, что хотя ученые из лаборатории Кэвендиша описали около 20 структур, альфа-спирали среди них не было. Более того, авторы статьи пришли к выводу, что ни одна из этих структур не подходит для альфа-кератина. Полинг с радостью согласился с этим выводом – в особенности потому, что считал, что Брэгг с коллегами не наложили на свои конфигурации самое важное ограничение, зато ввели условие, которое Полингу казалось совершенно ненужным. С одной стороны, ни в одной из моделей Брэгга не учитывалась плоскостная структура пептидной группы, а Полинг был полностью убежден, что его предположение верно. С другой – ученые из лаборатории Кавендиша, судя по всему, исходили из предположения, что на каждый полный виток их спиральных структур должно было приходиться