Читаем Открытия и изобретения, о которых должен знать современный человек полностью

Сегодня известно, что движение зарядов в проводнике происходит весьма удивительным образом. В любом твердом теле, обладающем кристаллической решеткой, всегда существуют свободные электроны. Они являются общими для всех атомов, расположенных в узлах решетки, и переходят с орбиты вокруг одного атома на орбиту вокруг другого. Если проводник замкнут в цепь, то движение электронов становится цикличным. Оно приобретает характер непрерывного движения. Это движение хаотическое, оно обусловлено присутствием внутри кристаллической решетки энергии, увеличивающей энтропию.

Если на концах замкнутой цепи создать разность потенциалов (напряжение), то заряды придут в упорядоченное движение. Оно и называется электрическим током. Однако характер движения электронов не будет претерпевать существенных изменений. Заряженные частицы по-прежнему перемещаются в таком проводнике, перепрыгивая от одного заряженного ядра к другому. Это их сильно тормозит и вызывает, т. о., потерю энергии.

Нетрудно понять, что расходуемая электронами энергия превращается в теплоту. Разные вещества обладают неодинаковым сопротивлением, поскольку имеют различное атомарное или молекулярное строение. Положительно заряженные атомные ядра в узлах решетки неодинаково воздействуют на поток свободных электронов, но в зависимости от величины своих зарядов и плотности размещения в решетке.

Реально ли победить электрическое сопротивление. Полностью этого добиться невозможно, однако значительно уменьшить его вполне допустимо. Эффект сверхпроводимости был открыт в 1911 г. нидерландским физиком Г. Камерлинг-Ониссом. Он установил, что при очень низких температурах металлы и сплавы почти на 100 % утрачивают способность тормозить ток, поэтому электрическая энергия начинает в полном смысле слова течь по проводнику, не испытывая и малейших затрат. К сожалению, физиков вскоре ждало разочарование, поскольку использовать сверхпроводники для передачи тока высокого напряжения невозможно.

Требовались дальнейшие исследования, которые были призваны установить, что именно мешает человеку применять в промышленности перспективные материалы. Природа загадочного явления получила научное объяснение только в 1957 г. в работах отечественного физика Н. Н. Боголюбова и американцев Дж. Бардина, Дж. Шриффера и Л. Купера. Оказывается, в сверхпроводниках электроны объединяются в пары. Ток парных зарядов обладает уникальными свойствами, поскольку при движении частиц на строго определенной скорости они не испытывают трения. Во всех остальных случаях электроны встречают сопротивление со стороны атомных ядер.

Сегодня установлено, что ряд материалов можно заставить работать, как сверхпроводники, при сравнительно высоких температурах. Это явление получило название высокотемпературной сверхпроводимости. Изучены и многие другие любопытные свойства проводников такого рода. Возможности практического применения открытого явления рассматривает криоэлектроника и ряд других наук. Приставка в названии криоэлектроники, происходящая от греческого слова krios, означает в переводе на русский язык «мороз, холод» и подразумевает, что такая электроника работает при специальном охлаждении.

Проводники способны не только увеличивать свои проводящие способности, но и снижать их. Во-первых, проводимость вещества зависит от размеров конкретного образца.

Если взять ничтожно мелкую частицу металла, то она не обязательно будет проводником, хотя сам металл таковым является. С уменьшением размеров свойство проводимости электрического тока постепенно убывает. Причиной тому служат физические особенности природы электронов, переносящих электрический ток.

Эти частицы ведут себя одновременно и как электромагнитные волны. Если внутри крупицы металла определенных размеров электроны-корпускулы и могли бы передвигаться, то волны здесь двигаться никак не могут. Для проявления волновых свойств электронов в крупицах определенного размера просто не хватает места. Предельный размер был найден опытным путем, он составляет 10 нм. Именно такую величину должны иметь крупицы проводника, чтобы он полностью потерял свои проводящие свойства.

Может показаться, что эти исследования носят чисто академический характер. На самом же деле практическое значение открытия колоссально, поскольку оно показывает нам на предел миниатюризации интегральных схем. Современные чипы уже давно собираются из элементов, габариты которых отвечают уровню микромира.

Утрата проводимости при уменьшении размеров до 10 нм служит естественным препятствием для дальнейшей миниатюризации схем и заставляет искать обходные пути для последующего развития электронной техники. Кроме того, открытие проливает свет на перспективы нанотехнологий.

Изобретена лампа накаливания

Перейти на страницу:

Все книги серии Популярная библиотека самообразования

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Изобретено в СССР
Изобретено в СССР

Изобретательская мысль в Советском Союзе развивалась своеобразно. Ее поощряли в избранных областях – космической, военной, научной – и практически игнорировали в бытовой. Иначе говоря, мы совершали важнейшие прорывы в ракетостроении и фундаментальных исследованиях, но серьёзно отставали во всём, что касалось повседневной жизни, от пылесосов до автомобилей. У этой книги две задачи. Первая – рассказать об изобретениях, сделанных нашими соотечественниками в советский период, максимально объективно, не приуменьшая и не преувеличивая их заслуг; вторая – показать изобретательство в СССР в контексте, объясняющем его особый путь. И да, конечно, – развеять многочисленные мифы, связанные с историей изобретательства.

Тим Юрьевич Скоренко

История техники / Научно-популярная литература / Образование и наука