Поскольку мы рассматриваем картину с точки зрения 2-мерного пространства, то и векторы в нём могут лежать только в "плоскости" этого пространства, у них по определению не может быть третьей пространственной компоненты, координаты. Кроме того, мы выбираем
Рис.5. Перенос вектора в искривлённом 2-мерном пространстве из точки A в точку B по двум разным траекториям
На рисунке мы обязаны всегда вектор "накладывать" на ближайшую к нему параллель, поэтому приводим только те положения вектора, где он точно совпадает с параллелью. Промежуточные положения вектора также совпадают с промежуточными параллелями. Как видно на рис.5, никаким образом мы не сможем изменить
Теперь рассмотрим перемещение такого же вектора искривлённом 3-мерном пространстве. Характер искривления не принципиален, поэтому возьмём его в форме гравитационной воронки нейтронной звезды.
Рис.6. Перенос вектора в искривлённом 3-мерном пространстве из точки A в точку B по двум разным траекториям
Как и в предыдущем случае искривлённого 2-мерного пространства мы никакими ухищрениями не сможем в конечной точке перемещения векторам придать различающиеся направления. В этой конечной точке они могут иметь только одно-единственное допустимое условиями задачи направление – это направление параллели в этой точке. Поскольку вектор изначально имел направление, совпадающее с направлением параллели в представленной группе, то и в конченой точке он может иметь только точно такое же направление.
В заключение рассмотрим ещё одну аргументацию, аналитическую, которая приводит к ожидаемому расхождению направлений просто как следствие вычислений.
"Весьма существенно, что в кривом пространстве параллельный перенос вектора из одной заданной точки в другую дает разные результаты, если он совершается по разным путям. В частности, отсюда следует, что если переносить вектор параллельно самому себе по некоторому замкнутому контуру, то он, возвратившись в первоначальную точку, не совпадет с самим собой.
Для того чтобы уяснить это, рассмотрим двухмерное искривленное пространство, т. е. какую-нибудь кривую поверхность. На рис.19 изображен фрагмент такой поверхности, ограниченный тремя геодезическими линиями. Подвергнем вектор 1 параллельному переносу вдоль контура, образованного этими линиями. При передвижении вдоль линии АВ вектор 1, сохраняя все время одинаковый угол с этой линией, перейдет в вектор 2. При передвижении вдоль ВС он таким же образом перейдет в 3. Наконец, при движении из С в А вдоль кривой СА, сохраняя постоянный угол с этой кривой, рассматриваемый вектор перейдет в 1', не совпадающий с вектором 1.
Выведем общую формулу, определяющую изменение вектора при параллельном переносе вдоль бесконечно малого замкнутого контура. Это изменение ΔАk
можно записать в видегде интеграл берётся по данному контуру. Подставляя вместо δАk
выражение (85.5), имеемстоящий под интегралом вектор Аi
меняется по мере его переноса вдоль контура" [9, с.349].Сначала отметим очевидную, на наш взгляд, ошибку на рисунке: штрихом должен быть обозначен вектор 1, направленный вертикально. Нетрудно заметить, что этот рисунок практически тождественен нашему рис.2a. Следовательно, если, как и там, мы здесь также "срежем" верхушку траектории в точке A, то сразу же обнаружим, что вектор на самом деле не вернулся в исходную точку!
Рис.7. Перенос вектора в искривлённом 2-мерном пространстве по замкнутой траектории не меняет его направления при возвращении в исходную точку