Читаем Патентование изобретений в области высоких и нанотехнологий полностью

В отдельных случаях, если какие-то варианты (зависимые пункты) имеют принципиальное значение, можно отложить рассмотрение заявки по существу до реализации этих вариантов. Если реализация зависимого пункта формулы изобретения невозможна в течение трех лет с момента подачи заявки (это время дается изобретателю на внесение изменений в первичные материалы заявки), а этот пункт является важным, то целесообразно практически подтвердить какие-либо из других зависимых пунктов, что может быть достаточным аргументом в пользу выдачи патента.

Например, найден новый эффект, посредством которого можно идентифицировать отдельные молекулы и это подтверждено экспериментом. Этот эффект связан с резонансными колебаниями 4-х типов нуклеотидов в ДНК: аденина 1, гуанина 2, цитозина 3 и тимина 4 (рис. 13.1) на фосфатных связях 5, соединенных с основанием 6.

При этом у каждого нуклеотида будет своя собственная частота колебаний, связанная с его массой и соответственно своя амплитуда колебаний [4, 5]. Определяя их последовательность, можно установить порядок расположения нуклеотидов в макромолекуле. Предложен механизм определения последовательности таких молекул в макромолекуле с помощью сканирующего зондового микроскопа, но в силу сегодняшнего развития техники реализовать этот метод пока невозможно, при этом существует объективная необходимость получения такого патента. Суть этого изобретения трудно отнести к открытиям, тем не менее, запатентовать зонтичное использование открытия (резонансного колебания нуклеотидов) – реальная задача. В этом случае формула изобретения на способ идентификации молекул должна выглядеть следующим образом. Независимый пункт формулы должен содержать признаки идентификации молекул, изложенные таким образом, чтобы идентификация и отдельных молекул (подтверждено экспериментом), и их последовательности (не подтверждено экспериментом) попадала под него. Например: «…распознавание нуклеотидов производят путем измерения амплитуды их резонансных колебаний на характерных и заведомо известных резонансных частотах с использованием СЗМ». Зависимые пункты при этом должны по отдельности включать и идентификацию отдельных молекул, подтвержденную экспериментальными данными, и определение последовательности молекул в макромолекуле, еще не подтвержденную экспериментом. Например: «…определение последовательности нуклеотидов осуществляют последовательным определением амплитуды их резонансных колебаний».

Для усиления позиции можно привести данные хотя бы на подготовительные операции реализации неподтвержденного зависимого признака. Например, на закрепление макромолекулы на предметном столике анализатора таким образом, чтобы существующие методы измерения аналогичных объектов по массам и размерам обеспечивали достоверность результатов с необходимой точностью. Кроме этого, для увеличения объема защиты целесообразно в зависимых пунктах привести различные подтвержденные способы возбуждения колебаний нуклеотидов: акустические, оптические и т. п. Различные условия измерения по температурным режимам, дополнительным воздействиям и т. д. Эта информация еще и увеличивает вероятность получения патента в полном объеме первичных притязаний.

Открытия, связанные с обнаружением новых свойств природных объектов, запатентовать напрямую, видимо, не удастся, так как эти свойства существуют объективно. И кого в этом случае считать автором? А вот патентование способов их измерения возможно. Причем здесь, как и в первом случае, целесообразно использование зонтичных патентов. Например, если речь идет о новых свойствах элементарных частиц, то целесообразно в заявке на изобретение проследить весь цикл с их участием: возникновение частиц, их существование и непосредственно акт измерения свойств. В этом случае полезен мозговой штурм и использование метода многомерных таблиц Г. С. Альтшуллера [6], по которому на каждом этапе существования частиц можно влиять на них всеми известными способами: нагревом, другими частицами, всевозможными излучениями и т. п. После отсеивания бесполезных вариантов воздействия помимо создания зонтичной формулы, что являлось первичной целью, можно скорректировать и независимый пункт формулы, так как какие-то признаки, скорее всего, улучшат основные характеристики (технические результаты) измерения свойств: точность измерения, его диапазон, простоту и т. п.

Рассмотрим вариант, в котором известен эффект или свойства объекта, но неясен механизм их возникновения. Например, предложена гипотеза механизма, по которому возникает эффект, производимый элементарными частицами. Гипотеза основывается на экспериментальных исследованиях, проведенных для частиц первого вида, и эта гипотеза (теория механизма возникновения эффекта) согласуется с экспериментальными исследованиями. Она заключается в том, что у электронов, эмитируемых из проводника, сохраняется аналог энергии Ферми, названный энергией квантовой нелокальное™ [7, 8, 9]. Проверка этой гипотезы осуществлена при низковольтной эмиссии электронов с острийных катодов 1 (рис. 13.2), имеющих низкую энергию Ферми, и переходе их через вакуумный промежуток 2 на анод 3, имеющий высокую энергию Ферми [10].

Рис. 13.2. Холодильник, использующий энергию квантовой нелокальности электронов: 1 – катод; 2 – вакуумный промежуток; 3 – анод; 4 – теплоизолятор

Рис. 13.3. Волновод для создания эффекта радиационной сверхтекучести рентгеновского излучения: 1 – зазор; 2,3 – стенки рефлекторов; 4 – волновод; 5, 6, 7, 8 – торцы; 9, 10 – поверхности стенок

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Яу Шинтан

Технические науки / Образование и наука