Пример такой последовательности взят из их статьи и воспроизведен, в виде семи стадий, на рис. 9–1. В начальном состоянии (стадия 1) одна позиция решетки занята катализатором, а все другие — субстратами. На стадии 2 уже создано несколько звеньев, и, соответственно, теперь в решетке есть несколько дырок. На стадии 3 создано еще больше звеньев и некоторые из них образовали цепи. На стадиях 4–6 производство звеньев и формирование цепей продолжается, и на стадии 7 мы видим, что цепь связанных звеньев замкнулась на себя, охватив катализатор, три звена и два субстрата. Таким образом, цепь сформировала
Рис. 9–1. Компьютерная имитация автопоэзной сети
В ходе длительной имитации цепь и дальше служила оболочкой для катализатора, тогда как звенья продолжали распадаться и заменяться другими. Таким образом, мембраноподобная цепь превратилась в границу
Будет ли последовательность такой имитации генерировать автопоэзный паттерн или не будет, в значительной мере зависит от вероятности распада, т. е. от того, насколько часто распадаются звенья. Поскольку тонкое равновесие между распадом и «починкой» основано на случайном движении субстратов сквозь мембрану, случайном создании новых звеньев и случайном перемещении этих звеньев к месту починки, мембрана будет оставаться стабильной только в том случае, если все эти процессы с большой вероятностью завершаются раньше, чем происходит следующий распад. Авторы показали, что при очень маленькой вероятности распада жизнеспособные автопоэзные паттерны действительно могут быть получены13.
Двоичные сети
Клеточный автомат, разработанный Варелой и его коллегами, стал одним из первых примеров того, как можно моделировать самоорганизующиеся сети живых систем. За последние двадцать лет было изучено множество других имитаций; показано, что эти математические модели способны спонтанно генерировать сложные высокоупорядоченные паттерны, в которых проявляются некоторые важные принципы порядка, наблюдаемые в живых системах.
Эти исследования получили новый толчок, когда стало ясно, что недавно разработанные элементы теории динамических систем — аттракторы, фазовые портреты, схемы бифуркации и т. п. — могут быть использованы в качестве эффективных инструментов для анализа моделей математических сетей. Взяв на вооружение эти новые методы, ученые снова обратились к двоичным сетям, разработанным в 40-е годы, и обнаружили, что, хотя это не автопоэзные сети, их анализ приводит к удивительным открытиям в области сетевых паттернов живых систем. Значительную часть этой работы выполнил биолог-эволюционист Стюарт Кауффман совместно с коллегами в институте Санта-Фе, Нью-Мехико14.
Поскольку изучение сложных систем с помощью аттракторов и фазовых портретов во многом связано с развитием теории хаоса, перед Кауффманом и его коллегами встал естественный вопрос: какова роль хаоса в живых системах? Мы и теперь еще далеки от полного ответа на этот вопрос, однако работа Кауффмана привела к нескольким интереснейшим идеям. Чтобы понять их, нам придется более пристально рассмотреть двоичные сети.
Двоичная сеть состоит из узлов, или переключателей, каждый из которых может находиться в одном из двух состояний, обычно обозначаемых ВКЛ и ВЫКЛ. То есть эта сеть более ограничена в возможностях, чем клеточный автомат, клетки которого могут находиться больше чем в двух состояниях. С другой стороны, узлы двоичной сети не обязательно образуют регулярную решетку, но могут быть соединены между собой более сложными способами.
Двоичные сети называют также «булевыми сетями», по имени английского математика Джорджа Буля, который использовал двоичные («да-нет») операции в середине XIX века для разработки символической логики, известной теперь как булева алгебра. На рис. 9–2 показана простая двоичная, или булева, сеть с шестью переключателями, каждый из которых подключен к трем соседним, причем два переключателя находятся в состоянии ВКЛ (черный цвет), а четыре — ВЫКЛ (белый цвет).
Рис. 9–2. Простая двоичная сеть