[Эта задача, очевидно, представляет собой разновидность предыдущей. Как и ранее, Дьюдени мог бы увеличить длину «линейки» (в нашем случае — дороги), не меняя остальных условий задачи. Оказывается, что 6 коттеджей можно расположить на круглой дороге в 31 км таким образом, чтобы любое целое расстояние от 1 до 30 км совпадало с расстоянием по кругу между некоторой парой домов. Нетрудно заметить, что для п домов максимальнее число различных способов измерения расстояний между ними равно
443. Существует 9 основных решений, представленных на рисунке. Решение
Читателю, быть может, будет небезынтересно узнать, что на шахматной доске 8 × 8 пять фишек можно расположить вдоль прямой при тех же самых условиях четырьмя основными способами, порождающими 20 различных решений.
444. Три мухи переменили позицию, как показано стрелками на рисунке, и при этом никакие две мухи не оказались на одной прямой.
445. Если бы у Пилкинса было 11 клерков, а у Рэдсона 12, то они могли бы сесть за стол 165 и 495 способами соответственно, что как раз и являлось бы решением задачи. Однако нам известно, что у той и другой фирмы клерков было поровну. Следовательно, ответом будет 15 клерков, садившихся по трое в течение 455 дней, и 15 клерков, садившихся по четыре в течение 1365 дней.
446. В первом случае существует 88 200 способов. Есть один простой метод, с помощью которого можно получить ответ, но объяснение его потребовало бы слишком много места. Во втором случае ответ уменьшается до 6300 способов.
447. Удалите первую плитку в каждом горизонтальном ряду. Тогда из оставшихся 16 плиток можно сложить квадрат, показанный на рисунке, в точном соответствии с заданными условиями.
448. Если вы попытались, как это часто делают, сначала расставить по местам все 6 экземпляров одной буквы, затем все 6 экземпляров другой и т. д., то обнаружите, что, расположив по 6 экземпляров каждой из четырех букв, можно еще разместить только по 2 экземпляра оставшихся двух букв, так что получится диаграмма, изображенная слева. Секрет заключается в том, чтобы заполнить клетки 6 экземплярами каждой из первых двух букв и пятью экземплярами каждой из остальных четырех букв; при этом получится вторая диаграмма, изображенная справа, только с четырьмя свободными клеточками.
449. Расположите 10 бочек следующими двумя способами, и сумма номеров вдоль каждой из сторон даст 13 — наименьшее возможное число:
Меняя положение номеров (но не сами номера) на каждой из сторон, мы получим по 8 решений в каждом случае, если не будем различать решения, получающиеся друг из друга поворотами и отражениями.
450. С тремя красными, белыми или зелеными лампами мы можем получить по 15 различных комбинаций (45). С одной красной и двумя белыми мы также можем получить 15 комбинаций, и при каждой из них имеется еще по 3 комбинации порядка цветов; всего 45 комбинаций. То же самое получится с одной красной и двумя зелеными, одной белой и двумя красными, одной белой и двумя зелеными, одной зеленой и двумя белыми, одной зеленой и двумя красными лампами (270). С одной красной, одной белой и одной зеленой лампами мы можем получить 6 раз по 15 комбинаций (90). С двумя красными, двумя белыми или двумя зелеными мы можем получить по 7 комбинаций (21). С одной красной и одной белой, или одной красной и одной зеленой, или одной белой и одной зеленой лампами мы можем получить по 14 комбинаций (42). С помощью только одной лампы мы можем послать всего по 1 сигналу (3). Теперь сложите числа в скобках, и вы получите ответ — 471 сигнал.
451. В следующем решении каждый узник скован с каждым из остальных один и только один раз.
Если читателю хочется найти трудную головоломку, над решением которой он мог бы биться в течение целой зимы, то пусть он попытается разбить аналогичным образом на тройки 21 узника в каждый из 15 дней так, чтобы ни одна пара не оказалась скованной дважды.
В случае, если он придет к выводу, что этого сделать нельзя, мы добавим, что у нас есть одно решение. Но это трудный орешек.
452. При данных условиях существует 144 различных способа.