Читаем Пилотируемые полеты на Луну полностью

Радиус наибольшего сближения с Землей RЕ также выражается через параметры попадания, чтобы гарантировать монотонность и достаточную линейность функций относительно переменных отправления от Земли. На рис. 31.8 показаны траектория возвращения к Земле и система координат для определения параметров попадания. Вектор S0E направлен приблизительно вдоль линии Луна-Земля, соответствующей моменту отправления от луны, Т0Е расположен в плоскости земного экватора, R0E дополняет систему до правой

На рис. 31.9 показаны зависимости BЕ·Т0Е и BЕ·R0Е от продолжительности активного участка ступени S=IVB и времени старта для тех же условий отправления от Земли.

Поскольку вблизи Земли ограничен лишь параметр RE,-необходима только одна компонента параметра попадания. Вычисления показывают, что при изменении каждого из трех начальных условий величина BЕ·T0Е изменяется сильнее, чем BЕ·

R0Е. При определении параметра (BЕ·T0Е)* через RE* вычисления производятся по следующим формулам:

где bE* – заданная величина эллиптического параметра попадания; I*stE – заданный угол между В0E и T0E; В·T0E – заданный параметр попадания при возвращении к Земле.

Рис. 31.8. Параметры попадания при встрече с Землей.

Рис. 31.9. Зависимость параметров попадания и re от изменения продолжительности активного участка и времени старта.


Вычисление действительных величин В·T0E и В·R0E в процессе каждой итерации производится следующим образом. В перигее заданы радиус-вектор относительно центра Земли R, вектор скорости V и большая полуось геоцентрического эллипса а. Расчет проводится по формулам

где Np0 – единичный вектор, перпендикулярный плоскости геоцентрического эллипса; f – угол между R 0 и ВE0; е – эксцентриситет геоцентрического эллипса; bE – модуль вектора

B0E, направленного перпендикулярно S0E из центра Земли к действительной входной траектории; ВE, TE0, ВE, RE0 – действительные параметры попадания.

Методика расчета траектории возвращения

Траектории, которые подходят к Луне по направлению движения, не гарантируют получения участка возвращения к Земле, который будет отвечать требованиям сходимости процесса расчета траекторий. Чтобы обеспечить получение траектории возвращения к Земле, в схеме расчета с использованием сфер действия вводится разрыв между окололунным и околоземным участками траектории. На каждой окололунной траектории согласно рассматриваемой схеме расчета космический корабль переводится из состояния, соответствующего действительному периселению, в требуемое состояние. После этого начинается интегрирование околоземной траектории. Разрыв исчезает при достижении сходимости. Показанные на рис. 31.7 геометрические соотношения для окололунного участка позволяют определить Rm* и ?m*. Если известны вектор Sm0 и наклонение Ist*, то требуемые значения радиуса-вектора периселения Р

* и вектора скорости Q* можно вычислить по следующим формулам:

где (Р0)* и (Q0)* – соответствующие заданные единичные векторы, направленные по радиусам-векторам периселения и скорости в периселении, а V* – заданная величина скорости в периселении. [2,3, 10, 16,17.]

3.2. Управление траекторией полета корабля Apollo

Бортовая ЭЦВМ – главный элемент системы управления Apollo. Успех управления полетом корабля целиком зависит от эффективности работы бортовой ЭЦВМ. На любом этапе полета требуется, чтобы бортовая ЭЦВМ выполняла почти одновременно множество различных функций: ввод данных о приращении скорости, углов кардана, сигналов состояния систем, прием команд от астронавтов через пульт управления и команд с Земли и выдачу на выходе команд управления, режимов управления, цифровых сигналов, включения световых сигналов и передачу цифровой телеметрии.

Навигация и управление траекторией полета

Для определения положения и скорости корабля используются компоненты ускорения, создаваемые тягой ЖРД, измеряемые инерциальной системой вдоль трех не вращающихся осей координат.

Бортовая ЭЦВМ производит интегрирование ускорений от тяги с учетом гравитационного ускорения в реальном масштабе времени и в функции инерциального положения определяются компоненты скорости корабля. Учет гравитационных сил может быть выполнен простым методом – опережающим вычислением гравитационных ускорений. На рис. 32.1 приведены уравнения движения аппарата в сферическом гравитационном полете и дается простой расчетный алгоритм в виде дифференциальных уравнений первого порядка, с помощью которого определяются положение и скорость.

Рис. 32.1. Алгоритм расчета векторов положения г и скорости V.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже