В начале 20-х годов Макс Борн и Джеймс Франк — физики и Давид Гильберт — математик организовали в Гёттингене «семинар по материи». Его посещали и признанные в то время учёные, и знаменитая впоследствии молодёжь. Почти каждый семинар Гильберт начинал вопросом:
«Итак, господа, подобно вам, я хотел бы, чтобы мне сказали точно: что такое атом?»
Сейчас мы знаем об атоме больше, чем все участники семинара тех лет, однако ответить Гильберту мы ещё не готовы. Дело в том, что до сих пор мы узнали довольно много
Благодаря Нильсу Бору даже сейчас, много лет спустя, при слове «атом» мы непроизвольно представляем себе маленькую планетную систему из ядра и электронов. Только потом усилием воли мы заставляем себя вспомнить, что ему присущи также и волновые свойства. Сейчас, как и прежде, обе идеи — «электрон-волна» и «электрон-частица» — существуют в нашем сознании независимо, и невольно мы пытаемся от одной из них избавиться. «Электрон или волна?» — к этому вопросу в 20-х годах физики возвращались постоянно, стремясь, как и все люди, к определённости.
К началу 1926 года в атомной физике сложилось любопытное положение: порознь и независимо возникли сразу две квантовые механики, исходные посылки которых резко различались. Гейзенберг вслед за Бором был убеждён, что электрон — частица, и свои матричные уравнения написал в этом убеждении. А Шрёдингер смог вывести своё дифференциальное уравнение, только поверив вместе с де Бройлем в волновые свойства электрона.
Гейзенберг требовал, чтобы в уравнения входили только те величины, которые можно непосредственно измерить на опыте: частоты спектральных линий и их интенсивности. На этом основании он исключил из теории понятие «траектория электронов в атоме», как величину, в принципе не наблюдаемую. Шрёдингер тоже не использовал понятия траектории, однако записал своё уравнение для
-функции, которая также измерена быть не может и смысл которой даже ему самому оставался пока неясным.Опыт — последний судья во всех спорах — вначале решительно стоял на стороне матричной механики. В самом деле, Фарадей обнаружил неделимость электрического заряда, и дальнейшие опыты Крукса и Томсона строго это доказали. Таким свойством может обладать только частица. Опыты Милликена и фотографии следов электрона в камере Вильсона устранили последние в этом сомнения.
Однако представления об электроне-частице резко противоречили факту удивительной стабильности атома. Мы много раз подчёркивали, что планетарный атом неустойчив. Именно для того, чтобы объяснить устойчивость атома и в то же время сохранить представление об электроне-частице, Бор и придумал свои постулаты.
Де Бройль и Шрёдингер пошли другим путём и показали, что устойчивость атома наиболее естественно объясняется, если допустить, что электрон — волна, а не частица. Эту гипотезу вскоре подтвердили прямыми опытами Дэвиссон, Джермер и Дж. П. Томсон, обнаружив у электрона способность к дифракции.
Опытам принято верить. Но как поверить сразу двум опытам, исключающим друг друга? Возникшая ситуация в истории физики примеров не имела и была настолько необычна, что вначале никто не подозревал о единстве двух механик, а потому все стремились доказать истинность одной из них и ложность другой. Между сторонниками обеих теорий шли ожесточённые споры: одни отстаивали право первородства матричной механики, другие предпочитали математическую простоту волновой механики. Конец этим спорам положил всё тот же Шрёдингер в начале 1927 года, доказав, что обе механики
КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ
Чем больше учёные узнавали об атоме, тем менее категоричными становились вопросы, которые они задавали природе. Во времена Планка и Эйнштейна хотели знать: «Луч света — это что: волна или поток частиц-квантов?» После работ де Бройля по-прежнему пытались выяснить: «Электрон — что это: волна или частица?» Лишь постепенно и с большим трудом оформилась простая мысль: «А почему