мы уже приводили однажды и объясняли смысл входящих в него символов: h
— постоянная Планка h, делённая на 2, m — масса электрона, E — полная энергия электрона в атоме a U(x) — его потенциальная энергия, которая показывает, с какой силой притягивался бы электрон к ядру, если бы он был частицей и находился от него на расстоянии x. Но нам по-прежнему неясен смысл волновой функции пси (). Чтобы ронять его, обратимся снова к аналогии с колеблющейся струной.Её уравнение
(d2
U)/(dx2) + (2/)2•U = 0очень похоже на уравнение Шрёдингера. Несколько решений уравнения струны, функции U
=Uk(x), изображено на рисунке. Это обычные, знакомые всем синусоиды, и смысл их очевиден: они изображаютТеперь взгляните на рисунок, где рядом с синусоидами струны U
k(x) изображены решения =n(x) уравнения Шрёдингера для атома водорода. Они очень похожи. И если даже никаких реальных колебаний, подобных движениям струны, в атоме не происходит, то аналогия не становится от этого менее полезной.Отмеченная аналогия позволяет пронумеровать решения
n(x) целым числом n точно так же, как решения Uk(x) нумеруются целым числом k. Более того, оказалось, что целое число n — это и есть то самое непонятноеПервый постулат Бора неким «усилием воли» предписывал электронам двигаться только по тем орбитам в атоме, которые удовлетворяют квантовому условию:
m
•v•r=n•(h/2)Это был плодотворный, но неестественный для физики принцип, и потому он вызвал у современников сложную смесь восхищения и недовольства. Требование Шрёдингера значительно естественнее: как бы хитро ни двигался электрон в атоме, он должен всё-таки находиться
В своё время эти следствия теории Шрёдингера покорили многих своей простотой. В уравнение Шрёдингера поверили и стали выяснять последнее: что представляет собой сама функция
.И если функция U
k(x) изображает форму колеблющейся струны, то что изображает ?ФОРМУ ЧЕГО ИЗОБРАЖАЕТ -ФУНКЦИЯ
Это один из самых сложных вопросов квантовой механики, на который даже сам Шрёдингер вначале ответил неправильно. Но его ответ так удобен и так близок к истине, что мы им на первых порах воспользуемся. Вот он.
Электрон в атоме не существует как частица. Он расплывается там в некое облако. Форма и плотность этого облака определяется волновой функцией
(x), причём на расстоянии x от ядра плотность (x) электронного облака равна квадрату этой функции:n(x) = |n(x)|2
Чтобы пояснить эту мысль, вспомним тот самый арбуз, с которого мы когда-то начали рассказ о квантовой механике, и попытаемся на рисунке изобразить его плотность
(x) в зависимости от расстояния x до центра арбуза. Очевидно, что функция (x) для арбуза везде примерно постоянна, она лишь несколько возрастает к краям из-за косточек и кожуры и, наконец, резко обрывается на границе арбуза. Взглянув на наш рисунок, человек, даже ни разу не видавший арбуза, может схематически представить себе, как устроен арбуз внутри. Правда, при этом он не будет иметь ни малейшего представления о его вкусе, цвете и аромате, а также о тысяче мелких признаков, которые отличают один арбуз от другого.Пытаясь проникнуть внутрь атома, все мы оказываемся в положении человека, который никогда в жизни арбуза не видел, но хочет представить его себе по функции
(x). Для атома функцию (x) вычисляют из уравнения Шрёдингера и затем с её помощью рисуют распределение электронного облака в атоме. Эти картины заменяют нам тот зрительный образ атома, к которому все мы бессознательно стремимся.На страницах 208 и 209 представлены объёмные изображения атома водорода, построенные по функциям
n(x), которые вычислены из уравнения Шрёдингера. Это и есть тот новый образ атома, к которому мы так долго шли и к которому теперь надо привыкать, В дальнейшем построенный образ изменится лишь немного — точнее, даже не сам он, а наше отношение к нему.