Недавно А. Келли показал, что точный расчет сопротивления твердого тела сдвигу достаточно сложен и от вещества к веществу сопротивление это сильно изменяется. Однако мы можем получить приближенное значение теоретической прочности на сдвиг с помощью очень простой модели, и результат не будет грубым. Рассмотрим модель - на бумаге или в натуре, - которая состоит из слоев шариков, представляющих атомы. Существуют такие взаимные расположения слоев, при которых они лежат наиболее близко друг к другу. Чтобы вывести их из такого положения, необходимо немного оттянуть слой от слоя. Такому движению сопротивляются растягиваемые связи: шарики-атомы против того, чтобы покинуть комфортабельные ямки минимальной энергии.
На рис. 27 изображена двумерная модель - два параллельных ряда монет, лежащих на столе. Ясно, что последнее сопротивление сдвигу исчезает в момент, когда атомы- монеты балансируют на вершинах друг у друга; такое положение создается в момент, когда слой оказывается сдвинутым относительно другого слоя на угол 30°. Пройдя эту точку, атомы будут сваливаться в положение равновесия на дне следующей ямы, и сдвиг на одно межатомное расстояние будет завершен. Сопротивление сдвигу началось с нуля, возросло до некоторого максимума, затем снова упало до нуля, когда атомы оказались на вершинах. Сопротивление будет максимальным примерно на полпути к вершине, в нашем случае это соответствует углу сдвига около 15°. Трехмерный случай будет немного более сложным, для него максимум наступает при 10°. Для кристаллов, которые состоят из атомов различных размеров, этот угол может быть еще меньше.
Очень грубые вычисления, основанные на этой модели, дают величину теоретической прочности на сдвиг порядка 10% от модуля упругости
Очень мягкие металлы, например чистые золото, серебро, свинец, можно испытывать на сдвиг руками. После сильного наклепа сопротивление сдвигу несколько повышается, но оно никогда не приближается к теоретической величине. Широко известна ковка металла, которая делает его более твердым: таким путем повышали твердость кромок еще медного и бронзового оружия, а в старину часовых дел мастера всегда обрабатывали так латунные заготовки шестеренок. (Если вы воздержитесь от смазки шестеренок старинных напольных часов, то зубья их не только перестанут собирать пыль и быстро истираться, но с течением времени будут становиться тверже и полироваться, и так будет продолжаться века.)
Вплоть до 1934 года общепринятое объяснение всех этих явлений было крайне неубедительным и походило на желание уйти от вопроса. Вот оно:
В 1934 году Дж. Тэйлор из Кэмбриджа, который изобрел лемешный якорь, придумал также дислокацию. По крайней мере, он "посадил" дислокацию в научную статью как гипотезу. Основная идея была чрезвычайно проста, настолько проста, что не могла быть ошибочной. И она в самом деле оказалась верной.
Почти невероятно, рассуждал Тэйлор, что металлические кристаллы в действительности так совершенны, как мы о них думаем, когда вычисляем их прочность. Давайте предположим, что во всем объеме кристалла, быть может, через каждый миллион атомов или что-нибудь около этого, встречаются небольшие неправильности. При этом нас интересуют не точечные искажения, такие, как чужеродные атомы, которые могут обеспечить движение отдельных точек, а линейные дефекты, которые позволят продвинуться вперед целым армиям атомов на широком фронте.