Планк мог еще принять квантованность испускания света, необходимую для объяснения его закона излучения, но предположение о том, что свет в принципе квантован (то есть разбит на частицеподобные порции) было настолько чуждо общепринятым представлениям о свете как электромагнитной волне, что Планк уперся. Только через шесть лет, на конференции в Бельгии – на ставшем знаменитым Сольвеевском конгрессе, Эйнштейн смог наконец убедить Планка в том, что от классической картины света придется отказаться, а кванты – или, иначе, фотоны – реальны.
Эйнштейн также был первым, кто использовал тот факт, который позже он сам отверг в своем знаменитом афоризме, высмеивающем вероятностную суть квантовой механики и реальности: «Бог не играет в кости со Вселенной». Эйнштейн показал, что если атомы
Эйнштейн начал квантовую революцию, но по иронии судьбы сам к ней так и не присоединился. Забавно, но при этом он был, возможно, первым, кто использовал вероятностные рассуждения для описания природы вещества – стратегию, которую последующие физики, превратившие квантовую механику в полноценную теорию, помещают на передний план. В результате Эйнштейн одним из первых физиков продемонстрировал, что Бог все же
Продолжая эту аналогию чуть дальше, заметим, что Эйнштейн одним из первых физиков продемонстрировал, что классическое представление о причинности в квантовом царстве начинает сбоить. Многие возражают против моего предположения о том, что Вселенная не нуждалась в причине и просто возникла из ничего. Но ведь именно это происходит со светом, которым вы пользуетесь при чтении этой страницы. Электроны в нагретых атомах испускают фотоны – фотоны, которых не существовало до момента, когда они были испущены; фотоны испускаются спонтанно и без конкретной причины. Почему же мы привыкли, по крайней мере в какой-то степени, к идее о том, что из ничего без причины могут возникать фотоны, но не признаём, что то же самое может случаться с целыми вселенными?
Осознание того, что электромагнитные волны одновременно представляют собой частицы, послужило началом квантовой революции, изменившей все наши взгляды на природу. Быть частицей и волной в одно и то же время в классике невозможно – это должно быть очевидно из рассказанного в данной главе, – но это возможно в квантовом мире. Должно быть очевидно также, что это было только начало.
Вселенная причудливее выдумки
Итак, не оставляйте упования вашего, которому предстоит великое воздаяние.
Народная мудрость гласит, что физики обожают изобретать безумную эзотерику для объяснения окружающего нас мира – либо потому, что нам делать больше нечего, либо потому, что мы испорчены от природы. Однако, как показывает открытие квантового мира, чаще бывает наоборот: это природа тащит нас, ученых, прочь от знакомых безопасных знаний, а мы брыкаемся и вопим изо всех сил.
Тем не менее сказать, что пионерам, начавшим толкать нас вперед, в квантовый мир, недоставало смелости, было бы глубочайшей неправдой. Путешествие, в которое они пускались, было беспрецедентным, и никто не мог указать им дорогу. Мир, в который они входили, бросал вызов здравому смыслу и классической логике, в нем на каждом шагу требовалась готовность к внезапной смене правил игры.
Представьте себе, что вы едете в другую страну, где все жители говорят на незнакомом языке, а законы не основываются на опыте, сколько-нибудь сравнимым с опытом, полученным вами на протяжении жизни. Более того, представьте, что дорожные знаки там спрятаны и к тому же могут меняться от места к месту. Если вам удастся все это представить, вы сможете отчасти понять, куда направлялись бунтари, перевернувшие наши представления о природе в первой половине XX века.
Аналогия между исследованием странных и новых квантовых миров и путешествием по незнакомой местности может показаться натянутой, но именно такие взаимоотношения того и другого нашли себе параллель в жизни не кого иного, как Вернера Гейзенберга, одного из основателей квантовой механики, вспомнившего однажды летний вечер 1925 г. на острове Гельголанд, чудесном оазисе в Северном море, где он вдруг понял, что открыл теорию: