А теперь задумаемся, как все это выглядит в субатомном мире. Энрико Ферми, как мы помним, выяснил, что по правилам квантовой механики математическое поведение групп или пар элементарных частиц зависит от того, обладают ли они полуцелым спином, то есть являются ли фермионами. Поведение групп фермионов резко отличается от поведения таких частиц, как фотоны, у которых спин имеет значение 1 (или любое другое целое значение, к примеру 0, 1, 2, 3 и т. д.). Математическая «волновая функция», описывающая пару фермионов к примеру, антисимметрична, тогда как аналогичная функция, описывающая пару фотонов, симметрична. Это означает, что, если поменять частицы местами, волновая функция, описывающая фермионы, поменяет знак. Но для таких частиц, как фотоны, волновая функция при такой замене останется прежней.
Поменять две частицы местами – то же самое, что отразить их в зеркале. Та, что была слева, теперь будет находиться справа, и наоборот. Таким образом, существует тесная связь между такой заменой и тем, что физики называют четностью и что является совокупной характеристикой подвергаемой отражению системы (то есть системы, в которой право и лево меняются местами).
Если некая элементарная частица распадается на две другие частицы, то волновая функция, описывающая «четность» конечного состояния (то есть сообщающая, поменяет ли волновая функция знак при замене правых частиц на левые и наоборот), позволяет нам присвоить исходной частице некую величину, которую мы тоже назовем четностью. И если сила в квантовой механике, управляющая распадом, игнорирует различие между правым и левым, то и сам распад не изменит четности квантового состояния системы.
Если же волновая функция системы антисимметрична в отношении обмена частиц после распада, то система имеет «отрицательную» четность. В этом случае волновая функция, описывающая начальное квантовое состояние распадающейся частицы, тоже должна обладать отрицательной четностью (то есть менять знак при обмене правого и левого).
Так вот, пионы – частицы, существование которых предположил Юкава, а открыл Пауэлл, – имеют отрицательную четность, так что волновая функция, описывающая квантовое состояние их зеркального отражения, должна иметь другой знак по сравнению с первоначальной волновой функцией. Различие между положительной и отрицательной четностью – это как различие между чудесным круглым мячом, который в зеркале выглядит точно так же, как без него, и потому характеризуется положительной четностью, и, скажем, вашей рукой, которая при отражении в зеркале меняет вид, превращаясь из правой в левую, и потому, можно сказать, характеризуется отрицательной четностью.
Из-за этих несколько абстрактных соображений наблюдаемые данные, связанные с распадом новых, открытых Пауэллом частиц, поставили физиков в тупик. Поскольку четность пиона отрицательна, четность пары пионов должна быть положительной, поскольку (–1)2
= 1. Однако система из трех пионов, по тем же соображениям, будет иметь отрицательную четность, так как (–1)3 = –1. Таким образом, если при распаде частицы четность не меняется, одна и та же частица не может распадаться до двух разных конечных состояний с разной четностью.Если бы сила, ответственная за распад, вела себя так же, как вели себя в те времена все остальные известные силы, такие как электромагнетизм или гравитация, то она игнорировала бы четность (не различала бы правое и левое) и потому не меняла бы в процессе распада первоначальную четность системы – точно так же, как свет, направленный на вашу правую руку, не сделает ее похожей на левую.
Поскольку представлялось невозможным, чтобы некий тип частиц распадался иногда на два, а иногда на три пиона, решение казалось простым. Требуется не одна, а две новые элементарные частицы с противоположными характеристиками четности. Пауэлл окрестил их тау-частицей и тета-частицей; одна из них распадалась на два пиона, другая – на три.
Наблюдения говорили о том, что эти две частицы обладают в точности одинаковой массой и временем жизни, что казалось немного странным, но Ли и Янг предположили, что это может быть общим свойством различных элементарных частиц; согласно их гипотезе, частицы существуют парами с противоположными значениями четности. Они назвали эту идею «удвоением четности».