Намбу и независимо от него физик Джеффри Голдстоун выяснили, что признаком такого нарушения симметрии было бы существование других безмассовых частиц, известных в настоящее время как бозоны Намбу – Голдстоуна (НГ), или голдстоуновские бозоны, взаимодействие которых с остальным веществом отражало бы также природу нарушения симметрии. Здесь можно провести своеобразную аналогию с более знакомой системой, такой как ледяной кристалл, где спонтанно нарушается симметрия относительно пространственного переноса, поскольку движение в одном направлении резко отличается от движения в другом. Но в таком кристалле возможны крошечные колебания отдельных атомов кристаллической решетки относительно своих равновесных положений. Эти колебательные моды, называемые, как я уже говорил, фононами, способны содержать в себе сколь угодно малое количество энергии. В квантовом мире физики элементарных частиц эти моды отразились бы как безмассовые частицы Намбу – Голдстоуна, поскольку там, где явно проявляется эквивалентность между энергией и массой, возбуждения, способные нести малую энергию или не нести никакой, соответствуют частицам с нулевой массой.
И вдруг – подумать только! – оказалось, что открытые Пауэллом пионы очень близко подходят под это описание. У них не то чтобы совсем отсутствует масса, но они намного легче остальных частиц, участвующих в сильном взаимодействии. Их взаимодействия с другими частицами имеют характеристики, ожидаемые для НГ-бозонов, которые могут существовать, если в природе имелось некоторое явление, нарушающее симметрию, энергия возбуждения для которого соответствовала бы по масштабу массе/энергии протонов и нейтронов.
Но, несмотря на всю важность работы Намбу, и сам он, и почти все его коллеги в данной области просмотрели связанное с ней, но гораздо более глубокое следствие спонтанного нарушения симметрии в теории сверхпроводимости, которое позже дало ключ к раскрытию подлинной загадки сильного и слабого ядерных взаимодействий. Внимание Намбу к нарушениям симметрии было совершенно оправданно, но аналогии, которые он и другие исследователи проводили со сверхпроводимостью, были неполны.
А на самом деле мы гораздо сильнее похожи на физиков, обитающих на ледяном кристалле изморози, чем можем себе представить. Зато нетрудно вообразить, что, как и у этих физиков, наша близорукость далеко не сразу была замечена физическим сообществом.
Жизнь внутри сверхпроводника
Ложь говорит каждый своему ближнему; уста льстивы, говорят от сердца притворного.
Сейчас ошибки прошлого могут показаться очевидными, но не забывайте, что объекты, наблюдаемые в зеркале заднего вида, часто оказываются ближе, чем кажется. Легко критиковать наших предшественников за упущения, но и то, что сегодня ставит нас в тупик, нашим потомкам может показаться очевидным. Работая на переднем крае науки, мы движемся по тропе, зачастую скрытой в тумане.
Аналогия со сверхпроводимостью, которую впервые использовал Намбу, полезна, но в основном по совершенно иным причинам, чем думали в свое время Намбу и другие. Задним числом ответ может показаться чуть ли не очевидным, как становятся очевидными после финала все намеки и детали, указывающие на убийцу в романах Агаты Кристи. Но, как и в этих детективах, на пути исследователя возникает множество отвлекающих деталей, а тупиковые направления делают полученное в конечном итоге решение еще более неожиданным.
Можно только посочувствовать физикам в той неразберихе, что царила тогда в исследованиях элементарных частиц. Вводились в строй новые ускорители, и всякий раз, когда преодолевался новый порог энергии столкновения, перед изумленным взором ученых появлялись новые сильно взаимодействующие родичи нейтронов и протонов. Процесс казался бесконечным. Это обескураживающее разнообразие заставляло и теоретиков, и экспериментаторов сконцентрироваться на загадке сильного ядерного взаимодействия: казалось, что именно в нем заключается самый серьезный вызов существующей теории.
Казалось, микромир можно описать как потенциально бесконечное число элементарных частиц со все возрастающими массами. Но все это плохо сочеталось с идеями квантовой теории поля – успешной концепции, сумевшей чудесно объяснить релятивистское квантовое поведение электронов и фотонов.