Большинство энергичных нейтрино в пучке при взаимодействии с протонами мишени должны были превращаться в мюоны – более тяжелые аналоги электронов. Эти мюоны вылетали из мишени, оставляя за собой длинный след, характерный для заряженной частицы, до самой кромки детектора. Протоны превращались в нейтроны, которые сами по себе не оставляют следов, но, сталкиваясь с ядрами, порождают короткий «ливень» заряженных частиц, оставляющих следы. Таким образом, эксперимент был нацелен на регистрацию мюонных следов с сопутствующим коротким ливнем заряженных частиц; они регистрировались как отдельные сигналы, говорящие в то же время об одном акте слабого взаимодействия.
Однако иногда нейтрино, провзаимодействовав с веществом вне детектора, порождало нейтрон, который, влетев в детектор, мог вступить там во взаимодействие. Такие события должны были оставлять след в виде одного только ливня сильно взаимодействующих частиц, порожденного нейтроном, без сопутствующего ему мюонного следа.
Когда на детекторе «Гаргамель» начался поиск нейтральных токов, внимание ученых сосредоточилось именно на таких изолированных каскадах заряженных частиц без сопутствующего им мюона. В событиях, связанных с нейтральными токами, нейтрино, взаимодействующее с нейтроном или протоном в детекторе, не превращается в заряженный мюон, но просто упруго отскакивает и уходит за пределы детектора, не оставив следа. Наблюдать при этом можно только каскад частиц отдачи – ту же сигнатуру, что остается после более обычных нейтринных взаимодействий вне детектора, порождающих нейтроны, которые попадают в детектор и порождают ливень ядерных частиц.
Таким образом, задачей эксперимента, если ставить целью однозначное обнаружение нейтральных токов, было отличить события, порождаемые нейтрино, от аналогичных событий, порождаемых нейтронами. (Эта же задача представляет главную сложность для экспериментаторов при поиске любых частиц, вступающих в слабые взаимодействия, включая и гипотетические частицы темного вещества, поиск которых сегодня идет в подземных детекторах по всему миру.)
Первый единичный электрон отдачи без каких бы то ни было сопутствующих ему следов заряженных частиц в детекторе удалось пронаблюдать в 1973 г. Такой электрон мог возникнуть в результате более редкого, но предсказанного для нейтральных токов столкновения нейтрино с электроном вместо протона или нейтрона. Вообще-то единичного события недостаточно, чтобы с определенностью заявить о новом открытии в физике элементарных частиц. Однако этот результат дал надежду, и к марту 1973 г. тщательный анализ нейтронного фона и наблюдавшихся изолированных ливней частиц, похоже, уже подтверждал, что нейтральные токи слабого взаимодействия действительно существуют. Тем не менее только к июлю 1973 г. исследователи в ЦЕРН выполнили все необходимые проверки, чтобы уверенно заявить о регистрации нейтральных токов, что они и сделали в августе на конференции в Бонне.
История могла бы на этом и закончиться, но, к несчастью, вскоре после этого другая группа ученых, занятая поисками нейтральных токов, перепроверила их данные на своей установке и обнаружила, что предыдущий сигнал, означавший наличие нейтральных токов, куда-то исчез. Это породило немалую суматоху и скепсис в физическом сообществе, а нейтральные токи, казалось, вновь попали под подозрение. В конце концов группа, работавшая на «Гаргамели», повторила все с начала, проверила детектор непосредственно на протонном пучке и собрала намного больше данных. Почти год спустя, в июне 1974 г., группа представила на очередной конференции неопровержимые доказательства существования сигнала. Тем временем конкурирующая группа нашла причину ошибки и подтвердила результат «Гаргамели». Глэшоу, Вайнберг и Салам были оправданны.
Нейтральные токи пробили себе дорогу, и уже казалось, что замечательное объединение слабого и электромагнитного взаимодействий вот-вот случится. Но оставались еще две нерешенные проблемы, которые требовали внимания.
Открытие нейтральных токов при нейтринном рассеивании подтвердило идею о существовании Z-частицы, но это никак не гарантировало, что слабое взаимодействие полностью соответствует образу, который предложили Глэшоу, Вайнберг и Салам и в котором слабое и электромагнитное взаимодействия были едины. Чтобы разобраться в этом, требовался эксперимент с использованием частицы, принимающей участие как в слабом, так и в электромагнитном взаимодействии. Электрон идеален в этом отношении, поскольку участвует только в этих двух взаимодействиях.