Итак, имеются разные виды мутаций и если учитывать мутации, которые обычно из-за высокой способности генома на уровне фенотипа сопротивляется изменениям в генотипе частота мутаций неожиданно оказалась очень высокой. Следовательно, ни о какой стабильности наследственной информации как таковой речи быть не может. Стабильность передачи наследственной информации реализуется не через один ген, а через генотип в целом, как и полагал Лысенко.
7.5. ИСТОРИЯ НАСЛЕДОВАНИЕ ПРИОБРЕТЕННЫХ ПРИЗНАКОВ
В свое время А. Вейсман в 1885 г. сделал вывод, что «наследование искусственно вызванных дефектов и потерь частей тела вполне отвергается». Укорочение хвоста или ушей у домашних животных, не приводят к развитию у потомков признаков «короткий хвост» или «короткие уши». Идее наследования приобретенных признаков А. Вейсман противопоставил свою гипотезу «непрерывности зародышевой плазмы», согласно которой преемственность поколений — это преемственность половых клеток (сперматозоидов и яйцеклеток). При этом наследственная информация, заключенная в оплодотворенной яйцеклетке — зиготе — обеспечивает развитие «надстройки» — соматических клеток, т. е. тела. Обратный поток информации — от соматических клеток к клеткам зародышевого пути — этой гипотезой запрещался постулированием т. н. «барьера Вейсмана» (46).
Важно подчеркнуть, что концепция А. Вейсмана была, вообще говоря, развита только для животных, у которых отделение клеток зародышевого пути и соматических клеток происходит на ранних стадиях эмбриогенеза. А у растений их отделение может происходить на поздних стадиях развития. Поэтому у них изменения, вызванные влиянием среды, могут остаться в возникающих половых клетках и затем передаться потомкам. Подобный механизм наследования приобретенных признаков возможен также и у животных — у тех из них, у которых наблюдается поздняя дифференциация половых клеток, когда ряд органов и тканей уже развились, как, например, у ряда моллюсков, или тех, у которых половые клетки образуются из соматических тканей. Кроме того, многие растения размножаются вегетативно — от корневых отпрысков и других частей растения. При этом вегетативное потомство наследует особенности той части, производным которой оно является (46).
Практически весь XX век биология прошла под знаком «барьера Вейсмана». По Вейсману, наследственный материал половых клеток якобы не подвержен внешним воздействиям. Основной причиной было то, что основное положение этой гипотезы — о защищенности генеративных клеток (сперматозоидов и яйцеклеток) от возможного влияния со стороны остальных структур организма — идеально соответствовало принципу «чистоты гамет», высказанному еще Г. Менделем и положенному в основу классической генетики, согласно которому гены не подвержены никаким изменениям. Генетики не отрицали изменений, но считали, что они могут быть очень ограниченными, только через мутации, мутаций генов, которые очень и очень редкие. Примером могут служить знаменитые опыты Вейсмана по отрубанию хвостов у крыс или мышей.
Сколько тысячелетий мужчины не травмируют женщин, а они всё едино рождаются девственницами. В те времена это было абсолютизировано формальными генетиками и даже нынешними генетиками (например, Ратнером, Животовским…) признается, что тогда неизменность наследственной информации была догмой. Между тем откровенная бредовость одиозных идей Вейсмана о "непрерывной зародышевой плазме" тогда была ясна даже наиболее продвинутым генетикам — тому же Моргану.
Только годы спустя под давлением фактов начался отход формальных генетиков с позиций «барьера Вейсмана». Однако прямо признаться в этом сторонники гипотезы А. Вейсмана не желали и стали менять формулировки, лишь бы 7 сохранить на словах саму эту гипотезу. Первым шагом стало открытие в 1930-40-х мутаций генов под действием внешнего фактора — рентгеновского облучения (Г. Меллером) и химических соединений (Ш. Ауэрбах и И. Раппопортом). Стало ясно, что среда может активно «вмешиваться» в гены и менять их. Однако процесс мутаций ненаправлен, т. е изменения могут быть как полезными, так и вредными или нейтральными, и потому генетическим сообществом было принято, что наличие мутаций не нарушает принципа «барьера Вейсмана». С открытием строения молекулы ДНК в 1953 г. был сформулирован «молекулярный» вариант гипотеза «барьера Вейсмана» — в форме т. н. «центральной догмы» молекулярной биологии: однонаправленности потока информации: от ДНК к РНК, а затем к белку. А именно, что ДНК всех клеток организма идентично ДНК зиготы, в каждой клетке на ДНК синтезируются «копии» функциональных генов — информационные (матричные) РНК, затем на каждой информационной РНК синтезируется соответствующий белок, идущий на создание «сомы». Обратный поток информации — к ДНК — этой догмой запрещался.