Оптики отвечали: «Увы, мы бессильны. Микроскоп, дающий полезное увеличение более чем в 1000 раз, сделать невозможно. Мы, конечно, сумеем построить микроскоп, который будет увеличивать изображение предмета в 2000–3000 раз — даже больше, но, увы, с его помощью вы увидите то же самое, что и при тысячекратном увеличении. Предмет будет казаться больше, крупнее, но нужных деталей или каких-либо подробностей различить не удастся; даже, наоборот, появятся искажения, которые помешают исследованию и будут вводить наблюдателя в заблуждение. 1000 — это предел полезного увеличения, за который не может переступить оптика».
Известно, что тень от непрозрачного диска, если его держать поперек светового луча, будет иметь форму круга. От квадрата тень получится квадратной, от кольца — кольцевой. Но всегда ли тень предмета соответствует предмету? У всякого ли непрозрачного тела обязательно должна иметься тень?
Был сделан такой опыт. На просторный ровный луг привезли мощный прожектор. Его установили на одном краю луга, а на противоположном — врыли в землю большой щит вроде тех, что ставят на стрельбищах.
Вечером, когда стемнело, запустили мотор прожекторной станции и включили ток. Луч прожектора направили вдоль поверхности земли на щит, стоявший примерно в четырех километрах от прожектора. Щит, выкрашенный белой краской, ярко осветился.
Один из производивших этот опыт вынул из портфеля фанерный диск размером с обыкновенную обеденную тарелку. Диск укрепили на заостренном шесте и понесли по направлению к прожектору. Пройдя примерно 500 метров, воткнули шест в землю так, чтобы диск стал поперек луча прожектора и его тень упала бы на шест.
К великому удивлению прожектористов и местных жителей, заинтересовавшихся опытом, тень от круга не была сплошным кругом. В середине тени от деревянного диска виднелось ярко освещенное пятно, как будто в центре диска имелось отверстие.
Но никакого окошка в диске не было, а его тень получилась почему-то кольцеобразной! (Рис. 73.).
Рис. 73
Причина этого, на первый взгляд странного и необъяснимого, явления кроется в самой природе света.
Свет огибает препятствия, встречающиеся на его пути, как огибают их морские волны или звуковые колебания. Именно благодаря своей колебательной, волновой природе свет обладает такой способностью.
Лучи прожектора, скользнувшие возле краев деревянного диска, обогнули их, отклонились от прямолинейного пути и упали на щит в центре тени от диска, образовав там светлое пятно. Тень диска приобрела вид кольца.
Световые лучи, огибающие препятствие, отклоняются от прежнего направления на очень небольшой угол. Поэтому для опыта требуется, чтобы щит стоял на большом удалении от диска и от источника света, но для маленьких предметов это расстояние может быть соответственно меньше.
Теперь мысленно представьте себе совсем маленький диск. Не может ли случиться так, что световые лучи, обогнув его края, сойдутся и тени от диска не получится вовсе?
Действительно, так и происходит. Очень маленькие предметы свет огибает полностью.
Свет как бы «не замечает» очень малых препятствий. И их поэтому нельзя увидеть, и никакое увеличение тут не поможет.[21]
Предметы, имеющие в поперечнике меньше 0,2 микрона, не отбрасывают тени, свет их огибает со всех сторон, как звуковые волны мебель в комнате, и они остаются невидимыми при любых увеличениях микроскопа.
Предел полезного увеличения
Человеческий глаз очень зорок, он способен заметить паутинку, натянутую между деревьями, особенно если она освещена солнцем, а толщина паутинки — 5 микронов. При обычном освещении мы в состоянии увидеть тонкий волос, толщиной в 25 микронов. Предмет, вчетверо больший, толщиной около 100 микронов — как, например, тире в этой книге — уже виден прекрасно.
Следовательно, чтобы разглядеть предмет диаметром в 0,2 микрона, его видимые размеры надо увеличить до 100 микронов, то есть до размеров, хорошо видимых глазом. А для этого достаточно иметь увеличение всего лишь в 500 раз, так как 100: 0,2 = 500!
Оптики считают, что увеличение в 1000 раз еще помогает различать новые детали или особенности рассматриваемого предмета, но большее увеличение уже совершенно бесполезно. Оно не позволит увидеть более мелких частиц, не позволит различить никаких новых деталей наблюдаемой в микроскоп картины.